版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024-2025學年江蘇省鎮(zhèn)江市第一中學高三4月階段性考試數(shù)學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知半徑為2的球內(nèi)有一個內(nèi)接圓柱,若圓柱的高為2,則球的體積與圓柱的體積的比為()A. B. C. D.2.已知雙曲線的一個焦點為,點是的一條漸近線上關(guān)于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.3.設(shè)f(x)是定義在R上的偶函數(shù),且在(0,+∞)單調(diào)遞減,則()A. B.C. D.4.已知雙曲線,為坐標原點,、為其左、右焦點,點在的漸近線上,,且,則該雙曲線的漸近線方程為()A. B. C. D.5.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.6.在正方體中,球同時與以為公共頂點的三個面相切,球同時與以為公共頂點的三個面相切,且兩球相切于點.若以為焦點,為準線的拋物線經(jīng)過,設(shè)球的半徑分別為,則()A. B. C. D.7.已知函數(shù)的最大值為,若存在實數(shù),使得對任意實數(shù)總有成立,則的最小值為()A. B. C. D.8.在中,角的對邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形9.已知銳角滿足則()A. B. C. D.10.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.11.已知命題:,,則為()A., B.,C., D.,12.已知邊長為4的菱形,,為的中點,為平面內(nèi)一點,若,則()A.16 B.14 C.12 D.8二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中,若的奇數(shù)次冪的項的系數(shù)之和為32,則________.14.已知數(shù)列的前項滿足,則______.15.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個邊長均為x的小正方形,然后做成一個無蓋方盒,該方盒容積的最大值是________.16.曲線在點處的切線方程為__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.18.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構(gòu)成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.19.(12分)已知為各項均為整數(shù)的等差數(shù)列,為的前項和,若為和的等比中項,.(1)求數(shù)列的通項公式;(2)若,求最大的正整數(shù),使得.20.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.21.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點.(1)求證:平面;(2)求直線與平面所成角的正弦值.22.(10分)如圖,直三棱柱中,分別是的中點,.(1)證明:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
分別求出球和圓柱的體積,然后可得比值.【詳解】設(shè)圓柱的底面圓半徑為,則,所以圓柱的體積.又球的體積,所以球的體積與圓柱的體積的比,故選D.本題主要考查幾何體的體積求解,側(cè)重考查數(shù)學運算的核心素養(yǎng).2.B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設(shè)雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B本題考查雙曲線的簡單幾何性質(zhì),考查直線與圓的位置關(guān)系,考查數(shù)形結(jié)合思想與計算能力,屬于中檔題.3.D【解析】
利用是偶函數(shù)化簡,結(jié)合在區(qū)間上的單調(diào)性,比較出三者的大小關(guān)系.【詳解】是偶函數(shù),,而,因為在上遞減,,即.故選:D本小題主要考查利用函數(shù)的奇偶性和單調(diào)性比較大小,屬于基礎(chǔ)題.4.D【解析】
根據(jù),先確定出的長度,然后利用雙曲線定義將轉(zhuǎn)化為的關(guān)系式,化簡后可得到的值,即可求漸近線方程.【詳解】如圖所示:因為,所以,又因為,所以,所以,所以,所以,所以,所以,所以漸近線方程為.故選:D.本題考查根據(jù)雙曲線中的長度關(guān)系求解漸近線方程,難度一般.注意雙曲線的焦點到漸近線的距離等于虛軸長度的一半.5.A【解析】
先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.6.D【解析】
由題先畫出立體圖,再畫出平面處的截面圖,由拋物線第一定義可知,點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離因此球內(nèi)切于正方體,設(shè),兩球球心和公切點都在體對角線上,通過幾何關(guān)系可轉(zhuǎn)化出,進而求解【詳解】根據(jù)拋物線的定義,點到點的距離與到直線的距離相等,其中點到點的距離即半徑,也即點到面的距離,點到直線的距離即點到面的距離,因此球內(nèi)切于正方體,不妨設(shè),兩個球心和兩球的切點均在體對角線上,兩個球在平面處的截面如圖所示,則,所以.又因為,因此,得,所以.故選:D本題考查立體圖與平面圖的轉(zhuǎn)化,拋物線幾何性質(zhì)的使用,內(nèi)切球的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化思想,直觀想象與數(shù)學運算的核心素養(yǎng)7.B【解析】
根據(jù)三角函數(shù)的兩角和差公式得到,進而可以得到函數(shù)的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結(jié)果.【詳解】函數(shù)則函數(shù)的最大值為2,存在實數(shù),使得對任意實數(shù)總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.這個題目考查了三角函數(shù)的兩角和差的正余弦公式的應用,以及三角函數(shù)的圖像的性質(zhì)的應用,題目比較綜合.8.C【解析】
利用正弦定理將邊化角,再由,化簡可得,最后分類討論可得;【詳解】解:因為所以所以所以所以所以當時,為直角三角形;當時即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.本題考查三角形形狀的判斷,考查正弦定理的運用,考查學生分析解決問題的能力,屬于基礎(chǔ)題.9.C【解析】
利用代入計算即可.【詳解】由已知,,因為銳角,所以,,即.故選:C.本題考查二倍角的正弦、余弦公式的應用,考查學生的運算能力,是一道基礎(chǔ)題.10.C【解析】
對選項逐個驗證即得答案.【詳解】對于,,是偶函數(shù),故選項錯誤;對于,,定義域為,在上不是單調(diào)函數(shù),故選項錯誤;對于,當時,;當時,;又時,.綜上,對,都有,是奇函數(shù).又時,是開口向上的拋物線,對稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項正確;對于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項錯誤.故選:.本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.11.C【解析】
根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.本題考查含有一個量詞的命題的否定,屬于基礎(chǔ)題.12.B【解析】
取中點,可確定;根據(jù)平面向量線性運算和數(shù)量積的運算法則可求得,利用可求得結(jié)果.【詳解】取中點,連接,,,即.,,,則.故選:.本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運算,關(guān)鍵是能夠?qū)⑺笙蛄窟M行拆解,進而利用平面向量數(shù)量積的運算性質(zhì)進行求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:由已知得,故的展開式中x的奇數(shù)次冪項分別為,,,,,其系數(shù)之和為,解得.考點:二項式定理.14.【解析】
由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時要注意的求解方法.【詳解】∵①,∴時,②,①-②得,∴,又,∴().故答案為:.本題考查求數(shù)列通項公式,由已知條件.類比已知求的解題方法求解.15.【解析】
由題意容積,求導研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點也是最大值點,此時.故答案為:本題考查了導數(shù)在實際問題中的應用,考查了學生數(shù)學建模,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.16.【解析】
對函數(shù)求導后,代入切點的橫坐標得到切線斜率,然后根據(jù)直線方程的點斜式,即可寫出切線方程.【詳解】因為,所以,從而切線的斜率,所以切線方程為,即.故答案為:本題主要考查過曲線上一點的切線方程的求法,屬基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當時,,即,此時無解;當時,;當時,.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當且僅當時等號成立.的最小值為4.本題考查解絕對值不等式,考查用基本不等式求最小值.解絕對值不等式的方法是分類討論思想.18.(1)(2)為定值.【解析】
(1)根據(jù)題意,得出,從而得出橢圓的標準方程.(2)根據(jù)題意設(shè)直線方程:,因為直線與橢圓相切,這有一個交點,聯(lián)立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設(shè)直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.本題考查橢圓的定義、方程、和性質(zhì),主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉(zhuǎn)化思想,是中檔題.19.(1)(2)1008【解析】
(1)用基本量求出首項和公差,可得通項公式;(2)用裂項相消法求得和,然后解不等式可得.【詳解】解:(1)由題得,即解得或因為數(shù)列為各項均為整數(shù),所以,即(2)令所以即,解得所以的最大值為1008本題考查等差數(shù)列的通項公式、前項和公式,考查裂項相消法求數(shù)列的和.在等差數(shù)列和等比數(shù)列中基本量法是解題的基本方法.20.(1)答案見解析(2)【解析】
(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時,時,①當時,恒成立,在單調(diào)遞增,無極值,不合題意.②當時,可得當時,,當時,.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當時,可得當時,,當時,.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數(shù)a的取值范圍為.本題考查了函數(shù)的單調(diào)性,最值問題,考查導數(shù)的應用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.21.(1)見解析;(2).【解析】
(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因為、分別為、的中點,所以.又因為平面,平面,所以平面;(2)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設(shè),則,,,,,,,.設(shè)平面的法向量為,則,即,令,則,,所以.設(shè)直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.本題考查線面平行的證明,同時也考查了利用空間向量法計算直線與平面所成的角,考查推理能力與計算能力,屬于中等題.22.(1)證明見解析(2)【解析】
(1)連接交于點,由三角形中位線定理得,由此能證明平面.(2)以為坐標原點,的方向為軸正方向,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年陜西省榆林十中高考語文模擬試卷(一)
- 2025年《價值為綱》學習心得例文(6篇)
- 彩色噴墨打印材料項目融資計劃書
- 物流行業(yè)2025版租賃協(xié)議6篇
- 2025版宿舍樓宿管員職責聘用合同3篇
- 2025年度新型存款居間代理管理合同4篇
- 2025年度知識產(chǎn)權(quán)質(zhì)押貸款協(xié)議4篇
- 2025版托盤銷售與新能源車輛運輸服務合同范本3篇
- 2025年度個人與銀行個人貸款合作專項協(xié)議4篇
- 二零二五年度嬰幼兒奶粉品牌孵化與市場拓展合同
- 2024版塑料購銷合同范本買賣
- JJF 2184-2025電子計價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2024年安徽省中考數(shù)學試卷含答案
- 2025屆山東省德州市物理高三第一學期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級上學期語文期末復習習題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學英語六年級下冊全冊教案
- 汽車噴漆勞務外包合同范本
- 2024年重慶南開(融僑)中學中考三模英語試題含答案
- 16J914-1 公用建筑衛(wèi)生間
評論
0/150
提交評論