新高考數(shù)學(xué)二輪復(fù)習(xí)重難點1-1 基本不等式求最值(8題型+滿分技巧+限時檢測)(解析版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點1-1 基本不等式求最值(8題型+滿分技巧+限時檢測)(解析版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點1-1 基本不等式求最值(8題型+滿分技巧+限時檢測)(解析版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點1-1 基本不等式求最值(8題型+滿分技巧+限時檢測)(解析版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點1-1 基本不等式求最值(8題型+滿分技巧+限時檢測)(解析版)_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

重難點1-1基本不等式求最值基本不等式是高考熱點問題,是??汲P碌膬?nèi)容,是高中數(shù)學(xué)中一個重要的知識點,在解決數(shù)學(xué)問題中有著廣泛的應(yīng)用,尤其是在函數(shù)最值問題中。題型通常為選擇題與填空題,但它的應(yīng)用范圍幾乎涉及高中數(shù)學(xué)的所有章節(jié),它在高考中常用于大小判斷、求最值、求最值范圍等。在高考中經(jīng)??疾爝\用基本不等式求函數(shù)或代數(shù)式的最值,具有靈活多變、應(yīng)用廣泛、技巧性強(qiáng)等特點。在復(fù)習(xí)中切忌生搬硬套,在應(yīng)用時一定要緊扣“一正二定三相等”這三個條件靈活運用。【題型1直接法求最值】滿分技巧條件和問題之間存在基本不等式的關(guān)系轉(zhuǎn)化符號:若含變量的項是負(fù)數(shù),則提取負(fù)號,將其轉(zhuǎn)化為正數(shù),再利用“公式”求最值.乘方:若目標(biāo)函數(shù)帶有根號,則先乘方后配湊為和為定值.【例1】(2023·河南信陽·高三宋基信陽實驗中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.0B.1C.-1D.2【答案】B【解析】因為SKIPIF1<0,SKIPIF1<0,則由基本不等式可得SKIPIF1<0,所以有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立.故選:B.【變式1-1】(2023·山東聊城·高三統(tǒng)考期中)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A【變式1-2】(2023·上海青浦·高三校考期中)若SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0時取等號,所以SKIPIF1<0的最小值為SKIPIF1<0.【變式1-3】(2023·河北保定·高三易縣中學(xué)??茧A段練習(xí))若SKIPIF1<0都是正數(shù),且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立.【變式1-4】(2023·河南·模擬預(yù)測)已知SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】1【解析】由題意,在SKIPIF1<0中,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,即SKIPIF1<0.【題型2配湊法求最值】滿分技巧將目標(biāo)函數(shù)恒等變形或適當(dāng)放縮,配湊出兩個式子的和或積為定值.配湊法的實質(zhì)在于代數(shù)式的靈活變形,配系數(shù)、湊常數(shù)是關(guān)鍵。利用配湊法求解最值應(yīng)注意以下幾個方面的問題:(1)配湊的技巧,以整式為基礎(chǔ),注意利用系數(shù)的變化以及等式中常數(shù)的調(diào)整,做到等價變形;(2)代數(shù)式的變形以配湊出和或積的定值為目標(biāo);(3)拆項、添項應(yīng)注意檢驗利用基本不等式的前提.【例2】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【解析】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,所以SKIPIF1<0的最小值是SKIPIF1<0.【變式2-1】(2023·福建廈門·高三廈門外國語學(xué)校校考期中)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.SKIPIF1<0C.1D.2【答案】A【解析】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.即SKIPIF1<0的最大值為SKIPIF1<0.故選:A【變式2-2】(2023·山西晉中·高三??奸_學(xué)考試)已知SKIPIF1<0,則SKIPIF1<0的最大值為()A.2B.4C.5D.6【答案】B【解析】因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,因為SKIPIF1<0,解得SKIPIF1<0,故選:B【變式2-3】(2023·江西·高三校聯(lián)考階段練習(xí))已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】4【解析】SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,取得最小值.【變式2-4】(2023·上海楊浦·高三復(fù)旦附中??茧A段練習(xí))已知正實數(shù)x,y滿足:SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取得等號;故SKIPIF1<0的最大值為SKIPIF1<0.【變式2-5】(2023·天津和平·高三耀華中學(xué)校考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0等號成立.【題型3消元法求最值】滿分技巧根據(jù)條件與所求均含有兩個變量,從簡化問題的角度來思考,消去一個變量,轉(zhuǎn)化為只含有一個變量的函數(shù),然后轉(zhuǎn)化為函數(shù)的最值求解.有時會出現(xiàn)多元的問題,解決方法是消元后利用基本不等式求解.注意所保留變量的取值范圍?!纠?】(2023·福建莆田·高三莆田一中??计谥校崝?shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.1B.2C.3D.4【答案】D【解析】因為SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等號故選:D.【變式3-1】(2023·江蘇鎮(zhèn)江·高三統(tǒng)考期中)已知正實數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】因為正實數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即當(dāng)SKIPIF1<0時,等號成立,此時,SKIPIF1<0,故SKIPIF1<0的最小值為SKIPIF1<0.故選:B.【變式3-2】(2023·浙江金華·校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,則SKIPIF1<0的最小值為()A.4B.6C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,易知SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,此時SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:D【變式3-3】(2023·重慶·高三渝北中學(xué)??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0/SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0,因為SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立.所以SKIPIF1<0的最小值為SKIPIF1<0.【變式3-4】(2023·河南洛陽·高三校聯(lián)考模擬預(yù)測)已知SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由已知得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.【題型4“1”的代換求最值】滿分技巧1、若已知條件中的“1”(常量可化為“1”)與目標(biāo)函數(shù)之間具有某種關(guān)系(尤其是整式與分式相乘模型),則實施“1”代換,配湊和或積為常數(shù).模型1:已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的最小值。SKIPIF1<0模型2:已知正數(shù)SKIPIF1<0滿足SKIPIF1<0求SKIPIF1<0的最小值。SKIPIF1<02、常數(shù)代換法適用于求解條件最值問題.應(yīng)用此種方法求解最值的基本步驟為:(1)根據(jù)已知條件或其變形確定定值(常數(shù));(2)把確定的定值(常數(shù))變形為1;(3)把“1”的表達(dá)式與所求最值的表達(dá)式相乘或相除,進(jìn)而構(gòu)造和或積的形式;(4)利用基本不等式求解最值.【例4】(2023·遼寧鐵嶺·高三校聯(lián)考期中)已知正數(shù)a,b滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.25B.36C.42D.56【答案】B【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為36.故選:B.【變式4-1】(2023·河北張家口·高三校聯(lián)考階段練習(xí))若正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.1【答案】B【解析】正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0,故選:B.【變式4-2】(2023·遼寧·高三校聯(lián)考期中)若正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0.【解析】由正實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0且SKIPIF1<0,即SKIPIF1<0,時等號成立.【變式4-3】(2023·青海海南·高三校聯(lián)考期中)已知實數(shù)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由已知可得,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,且SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立.所以,SKIPIF1<0的最小值為SKIPIF1<0.【變式4-4】(2023·重慶·高三重慶一中校考階段練習(xí))若正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【解析】根據(jù)條件SKIPIF1<0,得:SKIPIF1<0,又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,又因為SKIPIF1<0都是正數(shù),所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等,所以最小值為SKIPIF1<0.【變式4-5】(2023·河南周口·高三??茧A段練習(xí))已知正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.故SKIPIF1<0的最小值為SKIPIF1<0.【題型5雙換元法求最值】滿分技巧雙換元法是“1”的代換更復(fù)雜情況的應(yīng)用,常用于分母為多項式的情況。具體操作如下:如分母為與,分子為,設(shè)∴,解得:【例5】(2023·四川巴中·高三統(tǒng)考開學(xué)考試)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為()A.10B.9C.8D.7【答案】B【解析】由題意SKIPIF1<0得,SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,結(jié)合SKIPIF1<0,即SKIPIF1<0時取等號,也即SKIPIF1<0,即SKIPIF1<0時,等號成立,故SKIPIF1<0的最小值為9,故選:B【變式5-1】(2023·全國·模擬預(yù)測)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【解析】令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立.【變式5-2】(2023·山東·高三省實驗中學(xué)??计谥校┮阎猘,b,c均為正實數(shù),SKIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,原式SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.【變式5-3】(2023·福建龍巖·高三校聯(lián)考期中)已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】8【解析】由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立.【題型6齊次化法求最值】【例6】(2023·四川·高三校聯(lián)考階段練習(xí))已知實數(shù)SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】因為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.【變式6-1】(2022·全國·高三專題練習(xí))若SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為___________.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時取等號,結(jié)合SKIPIF1<0,即SKIPIF1<0時取等號,所以最小值為SKIPIF1<0.故答案為:SKIPIF1<0【變式6-2】(2022秋·福建南平·高三??计谥校┮阎獙崝?shù)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由題意得,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0等號成立,又SKIPIF1<0,此時SKIPIF1<0,SKIPIF1<0.故選:D【變式6-3】(2023·全國·高三專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0的最大值為_________.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,則SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【題型7構(gòu)造不等式求最值】滿分技巧當(dāng)條件式中給出了"和"與"積"之間的關(guān)系時,可以考慮借助基本不等式進(jìn)行放縮,由條件式構(gòu)建得到關(guān)于"和"或"積"的不等式,解此不等式即可求得"和"或"積"的最值.【例7】(2023·廣東江門·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【解析】由題意SKIPIF1<0,且SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時等號成立,令SKIPIF1<0,則上式為:SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍),所以SKIPIF1<0的取值范圍為SKIPIF1<0.【變式7-1】(2023·全國·高三專題練習(xí))若SKIPIF1<0,則SKIPIF1<0的最小值是()A.SKIPIF1<0B.1C.2D.SKIPIF1<0【答案】C【解析】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,因此SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以當(dāng)SKIPIF1<0時,SKIPIF1<0取得最小值2.故選:C【變式7-2】(2023秋·江西吉安·高三統(tǒng)考期末)已知實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.10B.8C.4D.2【答案】B【解析】由SKIPIF1<0,變形為SKIPIF1<0,設(shè)SKIPIF1<0,∵SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,取等號,即SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,此時,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,SKIPIF1<0的最大值為8.故選:B.【變式7-3】(2023·全國·高三專題練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍為______.【答案】SKIPIF1<0【解析】因為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,由基本不等式可得SKIPIF1<0,所以,SKIPIF1<0,即SKIPIF1<0,因為SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式7-4】(2022秋·山西晉中·高三校考階段練習(xí))已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值是___________.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.所以SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0的最大值SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號.故答案為:SKIPIF1<0【題型8多次使用不等式求最值】滿分技巧通過多次使用基本不等式求得代數(shù)式最值的過程中,需要注意每次使用基本不等式時等式成立的條件不同?!纠?】(2023·新疆喀什·統(tǒng)考一模)已知SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】SKIPIF1<0【解析】由SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.【變式8-1】(2023·上海徐匯·高一上海中學(xué)??计谥校┤魓,y,z均為正實數(shù),則SKIPIF1<0的最大值是.【答案】SKIPIF1<0【解析】SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取到等號.【變式8-2】(2023·遼寧丹東·高三鳳城市第一中學(xué)??茧A段練習(xí))若SKIPIF1<0,則SKIPIF1<0的最小值為.【答案】4【解析】由完全平方公式可知:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,所以有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.【變式8-3】(2023·天津?qū)幒印じ呷J臺第一中學(xué)??计谀┮阎猄KIPIF1<0,則SKIPIF1<0的最小值是.【答案】SKIPIF1<0【解析】SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值是SKIPIF1<0.(建議用時:60分鐘)1.(2023·廣東·高三統(tǒng)考學(xué)業(yè)考試)若SKIPIF1<0,則SKIPIF1<0的最小值()A.4B.5C.6D.7【答案】C【解析】SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.故選:C2.(2023·河北·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.8B.16C.12D.4【答案】A【解析】令SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,所以SKIPIF1<0的最小值為8.故選:A.3.(2023·黑龍江牡丹江·高一牡丹江第三高級中學(xué)??计谥校┮阎猄KIPIF1<0,則SKIPIF1<0的最小值是()A.4B.8C.12D.16【答案】D【解析】已知SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時“SKIPIF1<0”成立,故所求最小值是16.故選:D.4.(2023·四川·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時等號成立,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:C.5.(2023·全國·模擬預(yù)測)已知點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.4D.2【答案】C【解析】因為點SKIPIF1<0在直線SKIPIF1<0上,則SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時,其取得最小值4.故選:C.6.(2023·廣東肇慶·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最大值為()A.2B.SKIPIF1<0C.4D.SKIPIF1<0【答案】B【解析】因為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,故選:B7.(2023·重慶·高三渝北中學(xué)??茧A段練習(xí))若SKIPIF1<0都是正實數(shù),且SKIPIF1<0,則SKIPIF1<0的最小值為()A.SKIPIF1<0B.SKIPIF1<0C.4D.SKIPIF1<0【答案】A【解析】SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0,即SKIPIF1<0時等號成立.即SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,或SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:A8.(2023·河南·高三校聯(lián)考期中)已知正數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.16B.SKIPIF1<0C.8D.4【答案】D【解析】由正數(shù)SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,等號成立,所以SKIPIF1<0又由SKIPIF1<0,所以SKIPIF1<0的最小值為SKIPIF1<0.故選:D.9.(2023·重慶·高三重慶一中校考階段練習(xí))已知正實數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最小值為()A.9B.8C.3D.SKIPIF1<0【答案】C【解析】由條件知SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號.故選:C10.(2022·重慶·高三統(tǒng)考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為()A.10B.9C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由已知,令SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0得:SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時等號成立.SKIPIF1<0的最小值為SKIPIF1<0.故選:C.11.(2023·湖北·高三校聯(lián)考期中)(多選)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】ABC【解析】因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,等號成立,故A正確;易知SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,故B正確;因為SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,等號成立,故C正確;因為SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,又SKIPIF1<0,所以SKIPIF1<0,故D錯誤.故選:ABC12.(2023·遼寧朝陽·高三建平縣實驗中學(xué)校聯(lián)考階段練習(xí))(多選)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0的最小值為9B.SKIPIF1<0的最小值為SKIPIF1<0C.SKIPIF1<0的最大值為SKIPIF1<0D.SKIPIF1<0的最小值為SKIPIF1<0【答案】CD【解析】A:因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取等號,SKIPIF1<0取得最小值SKIPIF1<0,錯;B:SKIPIF1<0,二次函數(shù)的性質(zhì)知,當(dāng)SKIPIF1<0,SKIPIF1<0時SKIPIF1<0取得最小值SKIPIF1<0,錯;C:因為SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號,對;D:SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0時取等號,對.故選:CD13.(2023·山東·高三濟(jì)南一中校聯(lián)考期中)(多選)若實數(shù)SKIPIF1<0滿足SKIPIF1<0,則()A.當(dāng)SKIPIF1<0時,SKIPIF1<0有最大值B.當(dāng)SKIPIF1<0時,SKIPIF1<0有最大值C.當(dāng)SKIPIF1<0時,SKIPIF1<0有最小值D.當(dāng)SKIPIF1<0時,SKIPIF1<0有最小值【答案】ACD【解析】當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,SKIPIF1<0有最大值,最大值為18,選項A正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0化SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,所以方程SKIPIF1<0有兩不等實根SKIPIF1<0,SKIPIF1<0,只要SKIPIF1<0,則SKIPIF1<0,即方程SKIPIF1<0有兩個不等正根,相應(yīng)的關(guān)于SKIPIF1<0的方程SKIPIF1<0都有實數(shù)解,所以SKIPIF1<0取任意大的正實數(shù),都存在SKIPIF1<0使之成立,從而SKIPIF1<0即SKIPIF1<0沒有最大值,選項B錯誤;當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時,即SKIPIF1<0時,SKIPIF1<0有最小值,最小值為-6,選項C正確;當(dāng)SKIPIF1<0時,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時等號成立,SKIPIF1<0有最小值,最小值為SKIPIF1<0,選項D正確.故選:ACD.14.(2023·全國·高三模擬預(yù)測)(多選)實數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0的最大值為SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0的最大值為SKIPIF1<0【答案】ACD【解析】對于A選項,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時取“=”,故A正確;對于B選項,令SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0,其中SKIPIF1<0,SKIP

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論