新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-1 數(shù)列通項(xiàng)公式的求法(8題型+滿分技巧+限時(shí)檢測)(原卷版)_第1頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-1 數(shù)列通項(xiàng)公式的求法(8題型+滿分技巧+限時(shí)檢測)(原卷版)_第2頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-1 數(shù)列通項(xiàng)公式的求法(8題型+滿分技巧+限時(shí)檢測)(原卷版)_第3頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-1 數(shù)列通項(xiàng)公式的求法(8題型+滿分技巧+限時(shí)檢測)(原卷版)_第4頁
新高考數(shù)學(xué)二輪復(fù)習(xí)重難點(diǎn)5-1 數(shù)列通項(xiàng)公式的求法(8題型+滿分技巧+限時(shí)檢測)(原卷版)_第5頁
已閱讀5頁,還剩5頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

重難點(diǎn)5-1數(shù)列通項(xiàng)公式的求法數(shù)列的通項(xiàng)公式求法是高考數(shù)學(xué)的必考考點(diǎn),通常在選擇題、填空題與解答題第一問中考查。難度中等,但有時(shí)在同一個(gè)題目中會(huì)涉及到多種方法綜合性較強(qiáng)?!绢}型1觀察法求通項(xiàng)】滿分技巧已知數(shù)列前若干項(xiàng),求該數(shù)列的通項(xiàng)時(shí),一般對所給的項(xiàng)觀察分析,尋找規(guī)律,從而根據(jù)規(guī)律寫出此數(shù)列的一個(gè)通項(xiàng).【例1】(2023·河北張家口·高三尚義縣第一中學(xué)校聯(lián)考階段練習(xí))已知數(shù)列SKIPIF1<0,則SKIPIF1<0是這個(gè)數(shù)列的()A.第21項(xiàng)B.第22項(xiàng)C.第23項(xiàng)D.第24項(xiàng)【變式1-1】(2023·內(nèi)蒙古通遼·高三??茧A段練習(xí))數(shù)列SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的一個(gè)通項(xiàng)公式是an=()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式1-2】(2023·河南·高三校聯(lián)考期中)數(shù)列SKIPIF1<0的一個(gè)通項(xiàng)公式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式1-3】(2023·全國·高三專題練習(xí))(多選)已知數(shù)列的前4項(xiàng)為2,0,2,0,則依此歸納該數(shù)列的通項(xiàng)可能是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式1-4】(2023·四川成都·石室中學(xué)??寄M預(yù)測)南宋數(shù)學(xué)家楊輝所著的《解析九章算法》中有如下俯視圖所示的幾何體,后人稱之為“三角垛”.其最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,第四層10個(gè)…,則第三十六層球的個(gè)數(shù)為()A.561B.595C.630D.666【題型2由Sn與an關(guān)系求通項(xiàng)】滿分技巧若已知數(shù)列的前項(xiàng)和與SKIPIF1<0的關(guān)系,求數(shù)列SKIPIF1<0的通項(xiàng)SKIPIF1<0可用公式SKIPIF1<0構(gòu)造兩式作差求解.用此公式時(shí)要注意結(jié)論有兩種可能,一種是“一分為二”,即分段式;另一種是“合二為一”,即SKIPIF1<0和SKIPIF1<0合為一個(gè)表達(dá),(要先分SKIPIF1<0和SKIPIF1<0兩種情況分別進(jìn)行運(yùn)算,然后驗(yàn)證能否統(tǒng)一).【例2】(2023·山東濰坊·高三??计谥校?shù)列前SKIPIF1<0項(xiàng)和SKIPIF1<0,則該數(shù)列的第4項(xiàng)為()A.19B.20C.21D.22【變式2-1】(2023·陜西渭南·高三??茧A段練習(xí))數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.【變式2-2】(2023·黑龍江·校聯(lián)考模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0都有SKIPIF1<0,則()A.SKIPIF1<0是等比數(shù)列B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2-3】(2023·四川·校聯(lián)考三模)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式2-4】(2023·全國·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,且數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0的最大值為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的最大值是.【題型3累加法求通項(xiàng)】滿分技巧適用于an+1=an+f(n),可變形為an+1-an=f(n)利用恒等式an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)(n≥2,n∈N*)求解【例3】(2023·福建·高三校聯(lián)考期中)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則正整數(shù)SKIPIF1<0為()A.13B.12C.11D.10【變式3-1】(2023·廣東佛山·高二佛山市榮山中學(xué)校考期中)已知SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的通項(xiàng)公式為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式3-2】(2023·山西·高三校聯(lián)考階段練習(xí))在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0.【變式3-3】(2023·上海普陀·統(tǒng)考一模)若數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),則SKIPIF1<0的最小值是.【變式3-4】(2023·北京·高三匯文中學(xué)??计谥校┮阎獢?shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則集合SKIPIF1<0中元素的個(gè)數(shù)為.【題型4累乘法求通項(xiàng)】滿分技巧適用于an+1=f(n)an,可變形為eq\f(an+1,an)=f(n)要點(diǎn):利用恒等式an=a1·eq\f(a2,a1)·eq\f(a3,a2)·…·eq\f(an,an-1)(an≠0,n≥2,n∈N*)求解【例4】(2023·全國·高三專題練習(xí))已知SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,求數(shù)列通項(xiàng)公式.【變式4-1】(2023·山東青島·高二青島二中校考階段練習(xí))若數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則滿足不等式SKIPIF1<0的最大正整數(shù)SKIPIF1<0為()A.28B.29C.30D.31【變式4-2】(2023·河南·模擬預(yù)測)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.2023B.2024C.4045D.4047【變式4-3】(2023·重慶·高三重慶八中??茧A段練習(xí))已知正項(xiàng)數(shù)列SKIPIF1<0的前n項(xiàng)積為SKIPIF1<0,且SKIPIF1<0,則使得SKIPIF1<0的最小正整數(shù)n的值為()A.4B.5C.6D.7【變式4-4】(2023·河南·高三校聯(lián)考開學(xué)考試)數(shù)列SKIPIF1<0的首項(xiàng)為2,等比數(shù)列SKIPIF1<0滿足SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0的值為.【題型5構(gòu)造法求通項(xiàng)】滿分技巧1、形如SKIPIF1<0(其中SKIPIF1<0均為常數(shù)SKIPIF1<0且SKIPIF1<0)型設(shè)SKIPIF1<0,展開移項(xiàng)整理得SKIPIF1<0,與題設(shè)SKIPIF1<0比較系數(shù)(待定系數(shù)法)得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0構(gòu)成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列.2、形如SKIPIF1<0SKIPIF1<0型(1)當(dāng)SKIPIF1<0為一次函數(shù)類型(即等差數(shù)列)時(shí):設(shè)SKIPIF1<0,通過待定系數(shù)法確定SKIPIF1<0的值,轉(zhuǎn)化成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列SKIPIF1<0;(2)當(dāng)SKIPIF1<0為指數(shù)函數(shù)類型(即等比數(shù)列)時(shí):法一:設(shè)SKIPIF1<0,通過待定系數(shù)法確定SKIPIF1<0的值,轉(zhuǎn)化成以SKIPIF1<0為首項(xiàng),以SKIPIF1<0為公比的等比數(shù)列SKIPIF1<0,再利用等比數(shù)列的通項(xiàng)公式求出SKIPIF1<0的通項(xiàng)整理可得SKIPIF1<0法二:當(dāng)SKIPIF1<0的公比為SKIPIF1<0時(shí),由遞推式得:SKIPIF1<0—①,SKIPIF1<0,兩邊同時(shí)乘以SKIPIF1<0得SKIPIF1<0—②,由①②兩式相減得SKIPIF1<0,即SKIPIF1<0,構(gòu)造等比數(shù)列。法三:遞推公式為SKIPIF1<0(其中p,q均為常數(shù))或SKIPIF1<0(其中p,q,r均為常數(shù))時(shí),要先在原遞推公式兩邊同時(shí)除以SKIPIF1<0,得:SKIPIF1<0,引入輔助數(shù)列SKIPIF1<0(其中SKIPIF1<0),得:SKIPIF1<0?!纠?】(2023·江蘇淮安·盱眙中學(xué)??寄M預(yù)測)在數(shù)列SKIPIF1<0中,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的通項(xiàng)為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-1】(2023·寧夏石嘴山·高三平羅中學(xué)??茧A段練習(xí))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0等于()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-2】(2023·全國·模擬預(yù)測)(多選)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0,則下列判斷正確的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式5-3】(2023·山西太原·高三統(tǒng)考期中)(多選)已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是()A.SKIPIF1<0B.SKIPIF1<0是遞增數(shù)列C.SKIPIF1<0D.SKIPIF1<0【變式5-4】(2023·浙江·模擬預(yù)測)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0(1)試求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)求SKIPIF1<0.【題型6倒數(shù)法求通項(xiàng)】滿分技巧形如an+1=eq\f(pan,qan+r)(p,q,r是常數(shù)),可變形為eq\f(1,an+1)=eq\f(r,p)·eq\f(1,an)+eq\f(q,p)要點(diǎn):①若p=r,則eq\b\lc\{\rc\}(\a\vs4\al\co1(\f(1,an)))是等差數(shù)列,且公差為eq\f(q,p),可用公式求通項(xiàng);②若p≠r,則轉(zhuǎn)化為an+1=san+t型,再利用待定系數(shù)法構(gòu)造新數(shù)列求解【例6】(2022·重慶·高三西南大學(xué)附中??茧A段練習(xí))已知數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式6-1】(2023·全國·高三課時(shí)練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,則數(shù)列SKIPIF1<0的前2017項(xiàng)和SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式6-2】(2023·河南鄭州·統(tǒng)考模擬預(yù)測)已知數(shù)列SKIPIF1<0各項(xiàng)均為正數(shù),SKIPIF1<0,且有SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式6-3】(2023·湖南長沙·高三湖南師大附中??茧A段練習(xí))已知數(shù)列SKIPIF1<0的首項(xiàng)SKIPIF1<0,且滿足SKIPIF1<0.若SKIPIF1<0,則n的最大值為.【題型7三項(xiàng)遞推法求通項(xiàng)】滿分技巧適用于形如SKIPIF1<0型的遞推式用待定系數(shù)法,化為特殊數(shù)列SKIPIF1<0的形式求解.方法為:設(shè)SKIPIF1<0,比較系數(shù)得SKIPIF1<0,可解得SKIPIF1<0,于是SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,這樣就化歸為SKIPIF1<0型.【例7】(2023·四川成都·高三成都七中??计谥校┮阎獢?shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式7-1】(2023·全國·模擬預(yù)測)在數(shù)列SKIPIF1<0中,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.18B.24C.30D.36【變式7-2】(2023·廣東茂名·高三校考階段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0,SKIPIF1<0),SKIPIF1<0為其前SKIPIF1<0項(xiàng)和,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【變式7-3】(2023·全國·高三專題練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,求通項(xiàng)SKIPIF1<0.【變式7-4】(2023·全國·高三對口高考)數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式為.【題型8不動(dòng)點(diǎn)法求通項(xiàng)】滿分技巧(1)定義:方程SKIPIF1<0的根稱為函數(shù)SKIPIF1<0的不動(dòng)點(diǎn).利用函數(shù)SKIPIF1<0的不動(dòng)點(diǎn),可將某些遞推關(guān)系SKIPIF1<0所確定的數(shù)列化為等比數(shù)列或較易求通項(xiàng)的數(shù)列,這種求數(shù)列通項(xiàng)的方法稱為不動(dòng)點(diǎn)法.(2)在數(shù)列SKIPIF1<0中,SKIPIF1<0已知,且SKIPIF1<0時(shí),SKIPIF1<0(SKIPIF1<0是常數(shù)),=1\*GB3①當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為等差數(shù)列;=2\*GB3②當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為常數(shù)數(shù)列;=3\*GB3③當(dāng)SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為等比數(shù)列;=4\*GB3④當(dāng)SKIPIF1<0時(shí),稱SKIPIF1<0是數(shù)列SKIPIF1<0的一階特征方程,其根SKIPIF1<0叫做特征方程的特征根,這時(shí)數(shù)列SKIPIF1<0的通項(xiàng)公式為:SKIPIF1<0;(3)形如SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0是常數(shù))的二階遞推數(shù)列都可用特征根法求得通項(xiàng)SKIPIF1<0,其特征方程為SKIPIF1<0(*).(1)若方程(*)有二異根SKIPIF1<0、SKIPIF1<0,則可令SKIPIF1<0(SKIPIF1<0、SKIPIF1<0是待定常數(shù));(2)若方程(*)有二重根SKIPIF1<0SKIPIF1<0,則可令SKIPIF1<0(SKIPIF1<0、SKIPIF1<0是待定常數(shù)).(其中SKIPIF1<0、SKIPIF1<0可利用SKIPIF1<0,SKIPIF1<0求得)【例8】(2023·全國·高三專題練習(xí))若SKIPIF1<0(SKIPIF1<0,且SKIPIF1<0)求數(shù)列SKIPIF1<0的通項(xiàng)公式.【變式8-1】(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足性質(zhì):對于SKIPIF1<0且SKIPIF1<0求SKIPIF1<0的通項(xiàng)公式.【變式8-2】(2022·全國·高三專題練習(xí))已知數(shù)列的遞推公式SKIPIF1<0,且首項(xiàng)SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【變式8-3】(2023·全國·高三專題練習(xí))數(shù)列SKIPIF1<0滿足下列關(guān)系:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項(xiàng)公式.【變式8-4】(2023·全國·高三專題練習(xí))已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0.求數(shù)列SKIPIF1<0的通項(xiàng)公式.(建議用時(shí):60分鐘)1.(2023·四川內(nèi)江·??寄M預(yù)測)已知數(shù)列1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,3,SKIPIF1<0,…,SKIPIF1<0,…,則7是這個(gè)數(shù)列的()A.第21項(xiàng)B.第23項(xiàng)C.第25項(xiàng)D.第27項(xiàng)2.(2023·天津·高三天津市咸水沽第一中學(xué)校考期中)設(shè)SKIPIF1<0是數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,已知SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0()A.9B.27C.81D.1013.(2023·陜西安康·安康中學(xué)??寄M預(yù)測)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<04.(2023·陜西漢中·高三統(tǒng)考階段練習(xí))設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則數(shù)列SKIPIF1<0的前9項(xiàng)和為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<05.(2023·天津北辰·高三統(tǒng)考期中)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.16D.326.(2023·甘肅張掖·高臺(tái)縣第一中學(xué)??寄M預(yù)測)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<07.(2023·全國·高三專題練習(xí))數(shù)列SKIPIF1<0滿足SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0等于()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.(2022·高二單元測試)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0=SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的通項(xiàng)公式是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<09.(2023·安徽亳州·高二亳州二中??计谥校ǘ噙x)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論