2025屆北京市平谷區(qū)高三下學(xué)期4月月考(三)數(shù)學(xué)試題含解析_第1頁(yè)
2025屆北京市平谷區(qū)高三下學(xué)期4月月考(三)數(shù)學(xué)試題含解析_第2頁(yè)
2025屆北京市平谷區(qū)高三下學(xué)期4月月考(三)數(shù)學(xué)試題含解析_第3頁(yè)
2025屆北京市平谷區(qū)高三下學(xué)期4月月考(三)數(shù)學(xué)試題含解析_第4頁(yè)
2025屆北京市平谷區(qū)高三下學(xué)期4月月考(三)數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩16頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025屆北京市平谷區(qū)高三下學(xué)期4月月考(三)數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知集合,,則中元素的個(gè)數(shù)為()A.3 B.2 C.1 D.02.很多關(guān)于整數(shù)規(guī)律的猜想都通俗易懂,吸引了大量的數(shù)學(xué)家和數(shù)學(xué)愛(ài)好者,有些猜想已經(jīng)被數(shù)學(xué)家證明,如“費(fèi)馬大定理”,但大多猜想還未被證明,如“哥德巴赫猜想”、“角谷猜想”.“角谷猜想”的內(nèi)容是:對(duì)于每一個(gè)正整數(shù),如果它是奇數(shù),則將它乘以再加1;如果它是偶數(shù),則將它除以;如此循環(huán),最終都能夠得到.下圖為研究“角谷猜想”的一個(gè)程序框圖.若輸入的值為,則輸出i的值為()A. B. C. D.3.已知命題,那么為()A. B.C. D.4.已知點(diǎn),點(diǎn)在曲線上運(yùn)動(dòng),點(diǎn)為拋物線的焦點(diǎn),則的最小值為()A. B. C. D.45.復(fù)數(shù)()A. B. C.0 D.6.在中所對(duì)的邊分別是,若,則()A.37 B.13 C. D.7.設(shè)集合,,若,則()A. B. C. D.8.設(shè),滿足,則的取值范圍是()A. B. C. D.9.在三棱錐中,,,,,點(diǎn)到底面的距離為2,則三棱錐外接球的表面積為()A. B. C. D.10.“是函數(shù)在區(qū)間內(nèi)單調(diào)遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.如圖是一個(gè)算法流程圖,則輸出的結(jié)果是()A. B. C. D.12.已知集合(),若集合,且對(duì)任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知a,b均為正數(shù),且,的最小值為________.14.設(shè)變量,滿足約束條件,則目標(biāo)函數(shù)的最小值為______.15.已知向量,且,則實(shí)數(shù)的值是__________.16.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤(rùn)是300元,每桶乙產(chǎn)品的利潤(rùn)是400元.公司在生產(chǎn)這兩種產(chǎn)品的計(jì)劃中,要求每天消耗原料都不超過(guò)12千克.通過(guò)合理安排生產(chǎn)計(jì)劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤(rùn)是__________元.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知曲線:和:(為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長(zhǎng)度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點(diǎn),且線段的中點(diǎn)為.若射線與,交于,兩點(diǎn),求,兩點(diǎn)間的距離.18.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點(diǎn)為線段上的點(diǎn),過(guò)三點(diǎn)的平面與交于點(diǎn).將①,②,③中的兩個(gè)補(bǔ)充到已知條件中,解答下列問(wèn)題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.19.(12分)在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過(guò)定點(diǎn)并求出點(diǎn)的坐標(biāo);(3)在(2)的條件下,過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.20.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對(duì)于數(shù)陣的每一行,若其中有或,則將這一行中每個(gè)數(shù)都乘以;若其中沒(méi)有且沒(méi)有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過(guò)變換得到,再將經(jīng)過(guò)變換得到、,以此類推,最后將經(jīng)過(guò)變換得到”,記數(shù)陣中四個(gè)數(shù)的和為.(1)若,寫出經(jīng)過(guò)變換后得到的數(shù)陣;(2)若,,求的值;(3)對(duì)任意確定的一個(gè)數(shù)陣,證明:的所有可能取值的和不超過(guò).21.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.22.(10分)購(gòu)買一輛某品牌新能源汽車,在行駛?cè)旰?,政府將給予適當(dāng)金額的購(gòu)車補(bǔ)貼.某調(diào)研機(jī)構(gòu)對(duì)擬購(gòu)買該品牌汽車的消費(fèi)者,就購(gòu)車補(bǔ)貼金額的心理預(yù)期值進(jìn)行了抽樣調(diào)查,其樣本頻率分布直方圖如圖所示.(1)估計(jì)擬購(gòu)買該品牌汽車的消費(fèi)群體對(duì)購(gòu)車補(bǔ)貼金額的心理預(yù)期值的方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)將頻率視為概率,從擬購(gòu)買該品牌汽車的消費(fèi)群體中隨機(jī)抽取人,記對(duì)購(gòu)車補(bǔ)貼金額的心理預(yù)期值高于萬(wàn)元的人數(shù)為,求的分布列和數(shù)學(xué)期望;(3)統(tǒng)計(jì)最近個(gè)月該品牌汽車的市場(chǎng)銷售量,得其頻數(shù)分布表如下:月份銷售量(萬(wàn)輛)試預(yù)計(jì)該品牌汽車在年月份的銷售量約為多少萬(wàn)輛?附:對(duì)于一組樣本數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】

集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立方程組求得方程組解的個(gè)數(shù),即為交集中元素的個(gè)數(shù).【詳解】由題可知:集合表示半圓上的點(diǎn),集合表示直線上的點(diǎn),聯(lián)立與,可得,整理得,即,當(dāng)時(shí),,不滿足題意;故方程組有唯一的解.故.故選:C.本題考查集合交集的求解,涉及圓和直線的位置關(guān)系的判斷,屬基礎(chǔ)題.2.B【解析】

根據(jù)程序框圖列舉出程序的每一步,即可得出輸出結(jié)果.【詳解】輸入,不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)不成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;不成立,是偶數(shù)成立,則,;成立,跳出循環(huán),輸出i的值為.故選:B.本題考查利用程序框圖計(jì)算輸出結(jié)果,考查計(jì)算能力,屬于基礎(chǔ)題.3.B【解析】

利用特稱命題的否定分析解答得解.【詳解】已知命題,,那么是.故選:.本題主要考查特稱命題的否定,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.4.D【解析】

如圖所示:過(guò)點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,利用均值不等式得到答案.【詳解】如圖所示:過(guò)點(diǎn)作垂直準(zhǔn)線于,交軸于,則,設(shè),,則,當(dāng),即時(shí)等號(hào)成立.故選:.本題考查了拋物線中距離的最值問(wèn)題,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.5.C【解析】略6.D【解析】

直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.7.A【解析】

根據(jù)交集的結(jié)果可得是集合的元素,代入方程后可求的值,從而可求.【詳解】依題意可知是集合的元素,即,解得,由,解得.本題考查集合的交,注意根據(jù)交集的結(jié)果確定集合中含有的元素,本題屬于基礎(chǔ)題.8.C【解析】

首先繪制出可行域,再繪制出目標(biāo)函數(shù),根據(jù)可行域范圍求出目標(biāo)函數(shù)中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標(biāo)函數(shù)在點(diǎn)處取得最小值,故目標(biāo)函數(shù)的最小值為,故的取值范圍是.故選:D.本題主要考查了線性規(guī)劃中目標(biāo)函數(shù)的取值范圍的問(wèn)題,屬于基礎(chǔ)題.9.C【解析】

首先根據(jù)垂直關(guān)系可確定,由此可知為三棱錐外接球的球心,在中,可以算出的一個(gè)表達(dá)式,在中,可以計(jì)算出的一個(gè)表達(dá)式,根據(jù)長(zhǎng)度關(guān)系可構(gòu)造等式求得半徑,進(jìn)而求出球的表面積.【詳解】取中點(diǎn),由,可知:,為三棱錐外接球球心,過(guò)作平面,交平面于,連接交于,連接,,,,,,為的中點(diǎn)由球的性質(zhì)可知:平面,,且.設(shè),,,,在中,,即,解得:,三棱錐的外接球的半徑為:,三棱錐外接球的表面積為.故選:.本題考查三棱錐外接球的表面積的求解問(wèn)題,求解幾何體外接球相關(guān)問(wèn)題的關(guān)鍵是能夠利用球的性質(zhì)確定外接球球心的位置.10.C【解析】,令解得當(dāng),的圖像如下圖當(dāng),的圖像如下圖由上兩圖可知,是充要條件【考點(diǎn)定位】考查充分條件和必要條件的概念,以及函數(shù)圖像的畫法.11.A【解析】

執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán),即可求解,得到答案.【詳解】由題意,執(zhí)行上述的程序框圖:第1次循環(huán):滿足判斷條件,;第2次循環(huán):滿足判斷條件,;第3次循環(huán):滿足判斷條件,;不滿足判斷條件,輸出計(jì)算結(jié)果,故選A.本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的結(jié)果的計(jì)算與輸出,其中解答中執(zhí)行程序框圖,逐次計(jì)算,根據(jù)判斷條件終止循環(huán)是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12.C【解析】

根據(jù)題目中的基底定義求解.【詳解】因?yàn)?,,,,,,所以能作為集合的基底,故選:C本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

本題首先可以根據(jù)將化簡(jiǎn)為,然后根據(jù)基本不等式即可求出最小值.【詳解】因?yàn)?,所以,?dāng)且僅當(dāng),即、時(shí)取等號(hào),故答案為:.本題考查根據(jù)基本不等式求最值,基本不等式公式為,在使用基本不等式的時(shí)候要注意“”成立的情況,考查化歸與轉(zhuǎn)化思想,是中檔題.14.-8【解析】

通過(guò)約束條件,畫出可行域,將問(wèn)題轉(zhuǎn)化為直線在軸截距最大的問(wèn)題,通過(guò)圖像解決.【詳解】由題意可得可行域如下圖所示:令,則即為在軸截距的最大值由圖可知:當(dāng)過(guò)時(shí),在軸截距最大本題正確結(jié)果:本題考查線性規(guī)劃中的型最值的求解問(wèn)題,關(guān)鍵在于將所求最值轉(zhuǎn)化為在軸截距的問(wèn)題.15.【解析】∵=(1,2),=(x,1),則=+2=(1,2)+2(x,1)=(1+2x,4),=2﹣=2(1,2)﹣(x,1)=(2﹣x,3),∵∴3(1+2x)﹣4(2﹣x)=1,解得:x=.點(diǎn)睛:由向量的數(shù)乘和坐標(biāo)加減法運(yùn)算求得,然后利用向量共線的坐標(biāo)表示列式求解x的值.若=(a1,a2),=(b1,b2),則⊥?a1a2+b1b2=1,∥?a1b2﹣a2b1=1.16.1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤(rùn)為元

則根據(jù)題意可得目標(biāo)函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當(dāng)直線經(jīng)過(guò)時(shí),目標(biāo)函數(shù)的截距最大,此時(shí)最大,

由可得,即此時(shí)最大,

即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤(rùn),最大利潤(rùn)為1.【點(diǎn)睛】本題考查用線性規(guī)劃知識(shí)求利潤(rùn)的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識(shí)進(jìn)行求解是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1),;(2)1.【解析】

(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡(jiǎn)為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點(diǎn)的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點(diǎn)的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,,∴,∴的極坐標(biāo)方程為,把代入得,.把代入得,.∴,即,兩點(diǎn)間的距離為1.本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)化,涉及參數(shù)方程轉(zhuǎn)化為普通方程,以及在極坐標(biāo)系中求兩點(diǎn)之間的距離,屬綜合基礎(chǔ)題.18.(1);(2).【解析】

若補(bǔ)充②③根據(jù)已知可得平面,從而有,結(jié)合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補(bǔ)充兩個(gè)條件,結(jié)果都一樣,以①②作為條件分析;(1)設(shè),可得,進(jìn)而求出梯形的面積,可求出,即可求出結(jié)論;(2),以為坐標(biāo)原點(diǎn),建立空間坐標(biāo)系,求出坐標(biāo),由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設(shè)平面為平面.∵,∴平面,而平面平面,∴,又為中點(diǎn).設(shè),則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標(biāo)系,設(shè),則,由(1)得為平面的一個(gè)法向量,因?yàn)椋灾本€與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點(diǎn),即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.本題考查空間點(diǎn)、線、面位置關(guān)系,以及體積、直線與平面所成的角,考查計(jì)算求解能力,屬于中檔題.19.(1);(2)證明詳見解析,;(3).【解析】

(1)根據(jù)題意列出關(guān)于的等式求解即可.(2)先根據(jù)對(duì)稱性,直線過(guò)的定點(diǎn)一定在軸上,再設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,進(jìn)而求得的方程,并代入,化簡(jiǎn)分析即可.(3)先分析過(guò)點(diǎn)的直線斜率不存在時(shí)的值,再分析存在時(shí),設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達(dá)定理再代入求解出關(guān)于的解析式,再求解范圍即可.【詳解】解:設(shè)橢圓的標(biāo)準(zhǔn)方程焦距為,由題意得,由,可得則,所以橢圓的標(biāo)準(zhǔn)方程為;證明:根據(jù)對(duì)稱性,直線過(guò)的定點(diǎn)一定在軸上,由題意可知直線的斜率存在,設(shè)直線的方程為,聯(lián)立,消去得到,設(shè)點(diǎn),則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點(diǎn).當(dāng)過(guò)點(diǎn)的直線的斜率不存在時(shí),直線的方程為,此時(shí),當(dāng)過(guò)點(diǎn)的直線斜率存在時(shí),設(shè)直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.本題主要考查了橢圓的基本量求解以及定值和范圍的問(wèn)題,需要分析直線的斜率是否存在的情況,再聯(lián)立直線與橢圓的方程,根據(jù)韋達(dá)定理以及所求的解析式,結(jié)合參數(shù)的范圍進(jìn)行求解.屬于難題.20.(1);(2);(3)見解析.【解析】

(1)由,能求出經(jīng)過(guò)變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過(guò)變化后的矩陣,進(jìn)而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過(guò).【詳解】(1),經(jīng)過(guò)變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個(gè),經(jīng)過(guò)變換后第一行均變?yōu)?、;含有且不含的子集共個(gè),經(jīng)過(guò)變換后第一行均變?yōu)?、;同時(shí)含有和的子集共個(gè),經(jīng)過(guò)變換后第一行仍為、;不含也不含的子集共個(gè),經(jīng)過(guò)變換后第一行仍為、.所以經(jīng)過(guò)變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個(gè),經(jīng)過(guò)變換后第一行均變?yōu)?、;不含有的子集共個(gè),經(jīng)過(guò)變換后第一行仍為、.所以經(jīng)過(guò)變換后所有的第一行的所有數(shù)的和為.同理,經(jīng)過(guò)變換后所有的第二行的所有數(shù)的和為.所以的所有可能取值的和為,又因?yàn)椤?、、,所以的所有可能取值的和不超過(guò).本題考查

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論