版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊?fàn)畹男w,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺2.已知,是函數(shù)圖像上不同的兩點(diǎn),若曲線在點(diǎn),處的切線重合,則實(shí)數(shù)的最小值是()A. B. C. D.13.某幾何體的三視圖如圖所示,其俯視圖是由一個(gè)半圓與其直徑組成的圖形,則此幾何體的體積是()A. B. C. D.4.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.15.已知函數(shù)(),若函數(shù)有三個(gè)零點(diǎn),則的取值范圍是()A. B.C. D.6.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.7.函數(shù)在上單調(diào)遞減,且是偶函數(shù),若,則的取值范圍是()A.(2,+∞) B.(﹣∞,1)∪(2,+∞)C.(1,2) D.(﹣∞,1)8.已知函數(shù),若則()A.f(a)<f(b)<f(c) B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b) D.f(c)<f(b)<f(a)9.的展開式中,含項(xiàng)的系數(shù)為()A. B. C. D.10.設(shè)分別為的三邊的中點(diǎn),則()A. B. C. D.11.已知三棱錐的四個(gè)頂點(diǎn)都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.12.已知,,,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數(shù)為______用數(shù)字作答14.如圖,已知,,為的中點(diǎn),為以為直徑的圓上一動點(diǎn),則的最小值是_____.15.若存在實(shí)數(shù)使得不等式在某區(qū)間上恒成立,則稱與為該區(qū)間上的一對“分離函數(shù)”,下列各組函數(shù)中是對應(yīng)區(qū)間上的“分離函數(shù)”的有___________.(填上所有正確答案的序號)①,,;②,,;③,,;④,,.16.記為等比數(shù)列的前n項(xiàng)和,已知,,則_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)若不等式在時(shí)恒成立,則的取值范圍是__________.18.(12分)已知多面體中,、均垂直于平面,,,,是的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.19.(12分)設(shè)函數(shù)f(x)=sin(2x-π(I)求f(x)的最小正周期;(II)若α∈(π6,π)且f(20.(12分)已知.(1)若是上的增函數(shù),求的取值范圍;(2)若函數(shù)有兩個(gè)極值點(diǎn),判斷函數(shù)零點(diǎn)的個(gè)數(shù).21.(12分)在平面直角坐標(biāo)系中,已知橢圓的左、右頂點(diǎn)分別為、,焦距為2,直線與橢圓交于兩點(diǎn)(均異于橢圓的左、右頂點(diǎn)).當(dāng)直線過橢圓的右焦點(diǎn)且垂直于軸時(shí),四邊形的面積為6.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線的斜率分別為.①若,求證:直線過定點(diǎn);②若直線過橢圓的右焦點(diǎn),試判斷是否為定值,并說明理由.22.(10分)已知.(Ⅰ)當(dāng)時(shí),解不等式;(Ⅱ)若的最小值為1,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.A【解析】由題意,將楔體分割為三棱柱與兩個(gè)四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個(gè)四棱錐和1個(gè)直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點(diǎn)睛】本題考查三視圖及幾何體體積的計(jì)算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計(jì)算是解題的關(guān)鍵.2.B【解析】
先根據(jù)導(dǎo)數(shù)的幾何意義寫出在兩點(diǎn)處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關(guān)系樹,從而得出,令函數(shù),結(jié)合導(dǎo)數(shù)求出最小值,即可選出正確答案.【詳解】解:當(dāng)時(shí),,則;當(dāng)時(shí),則.設(shè)為函數(shù)圖像上的兩點(diǎn),當(dāng)或時(shí),,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設(shè)則,由可得則當(dāng)時(shí),的最大值為.則在上單調(diào)遞減,則.故選:B.【點(diǎn)睛】本題考查了導(dǎo)數(shù)的幾何意義,考查了推理論證能力,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.本題的難點(diǎn)是求出和的函數(shù)關(guān)系式.本題的易錯(cuò)點(diǎn)是計(jì)算.3.C【解析】由三視圖可知,該幾何體是下部是半徑為2,高為1的圓柱的一半,上部為底面半徑為2,高為2的圓錐的一半,所以,半圓柱的體積為,上部半圓錐的體積為,所以該幾何體的體積為,故應(yīng)選.4.A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.5.A【解析】
分段求解函數(shù)零點(diǎn),數(shù)形結(jié)合,分類討論即可求得結(jié)果.【詳解】作出和,的圖像如下所示:函數(shù)有三個(gè)零點(diǎn),等價(jià)于與有三個(gè)交點(diǎn),又因?yàn)?,且由圖可知,當(dāng)時(shí)與有兩個(gè)交點(diǎn),故只需當(dāng)時(shí),與有一個(gè)交點(diǎn)即可.若當(dāng)時(shí),時(shí),顯然??=??(??)與??=4|??|有一個(gè)交點(diǎn)??,故滿足題意;時(shí),顯然??=??(??)與??=4|??|沒有交點(diǎn),故不滿足題意;時(shí),顯然??=??(??)與??=4|??|也沒有交點(diǎn),故不滿足題意;時(shí),顯然與有一個(gè)交點(diǎn),故滿足題意.綜上所述,要滿足題意,只需.故選:A.【點(diǎn)睛】本題考查由函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬中檔題.6.C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.7.B【解析】
根據(jù)題意分析的圖像關(guān)于直線對稱,即可得到的單調(diào)區(qū)間,利用對稱性以及單調(diào)性即可得到的取值范圍。【詳解】根據(jù)題意,函數(shù)滿足是偶函數(shù),則函數(shù)的圖像關(guān)于直線對稱,若函數(shù)在上單調(diào)遞減,則在上遞增,所以要使,則有,變形可得,解可得:或,即的取值范圍為;故選:B.【點(diǎn)睛】本題考查偶函數(shù)的性質(zhì),以及函數(shù)單調(diào)性的應(yīng)用,有一定綜合性,屬于中檔題。8.C【解析】
利用導(dǎo)數(shù)求得在上遞增,結(jié)合與圖象,判斷出的大小關(guān)系,由此比較出的大小關(guān)系.【詳解】因?yàn)?,所以在上單調(diào)遞增;在同一坐標(biāo)系中作與圖象,,可得,故.故選:C【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查利用函數(shù)的單調(diào)性比較大小,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.9.B【解析】
在二項(xiàng)展開式的通項(xiàng)公式中,令的冪指數(shù)等于,求出的值,即可求得含項(xiàng)的系數(shù).【詳解】的展開式通項(xiàng)為,令,得,可得含項(xiàng)的系數(shù)為.故選:B.【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于基礎(chǔ)題.10.B【解析】
根據(jù)題意,畫出幾何圖形,根據(jù)向量加法的線性運(yùn)算即可求解.【詳解】根據(jù)題意,可得幾何關(guān)系如下圖所示:,故選:B【點(diǎn)睛】本題考查了向量加法的線性運(yùn)算,屬于基礎(chǔ)題.11.C【解析】
設(shè)為中點(diǎn),先證明平面,得出為所求角,利用勾股定理計(jì)算,得出結(jié)論.【詳解】設(shè)分別是的中點(diǎn)平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項(xiàng):【點(diǎn)睛】本題考查了棱錐與外接球的位置關(guān)系問題,關(guān)鍵是能夠通過垂直關(guān)系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.12.D【解析】
令,求,利用導(dǎo)數(shù)判斷函數(shù)為單調(diào)遞增,從而可得,設(shè),利用導(dǎo)數(shù)證出為單調(diào)遞減函數(shù),從而證出,即可得到答案.【詳解】時(shí),令,求導(dǎo),,故單調(diào)遞增:∴,當(dāng),設(shè),,又,,即,故.故選:D【點(diǎn)睛】本題考查了作差法比較大小,考查了構(gòu)造函數(shù)法,利用導(dǎo)數(shù)判斷式子的大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】
利用二項(xiàng)展開式的通項(xiàng)公式求出展開式的通項(xiàng),令,求出展開式中的系數(shù).【詳解】二項(xiàng)展開式的通項(xiàng)為令得的系數(shù)為故答案為1.【點(diǎn)睛】利用二項(xiàng)展開式的通項(xiàng)公式是解決二項(xiàng)展開式的特定項(xiàng)問題的工具.14.【解析】
建立合適的直角坐標(biāo)系,求出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而可得的坐標(biāo)表示,利用平面向量數(shù)量積的坐標(biāo)表示求出的表達(dá)式,求出其最小值即可.【詳解】建立直角坐標(biāo)系如圖所示:則點(diǎn),,,設(shè)點(diǎn),所以,由平面向量數(shù)量積的坐標(biāo)表示可得,,其中,因?yàn)?所以的最小值為.故答案為:【點(diǎn)睛】本題考查平面向量數(shù)量積的坐標(biāo)表示和利用輔助角公式求最值;考查數(shù)形結(jié)合思想和轉(zhuǎn)化與化歸能力、運(yùn)算求解能力;建立直角坐標(biāo)系,把表示為關(guān)于角的三角函數(shù),利用輔助角公式求最值是求解本題的關(guān)鍵;屬于中檔題.15.①②④【解析】
由題意可知,若要存在使得成立,我們可考慮兩函數(shù)是否存在公切點(diǎn),若兩函數(shù)在公切點(diǎn)對應(yīng)的位置一個(gè)單增,另一個(gè)單減,則很容易判斷,對①,③,④都可以采用此法判斷,對②分析式子特點(diǎn)可知,,進(jìn)而判斷【詳解】①時(shí),令,則,單調(diào)遞增,,即.令,則,單調(diào)遞減,,即,因此,滿足題意.②時(shí),易知,滿足題意.③注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為,易知,,因此不存在直線滿足題意.④時(shí),注意到,因此如果存在直線,只有可能是(或)在處的切線,,因此切線為.令,則,易知在上單調(diào)遞增,在上單調(diào)遞減,所以,即.令,則,易知在上單調(diào)遞減,在上單調(diào)遞增,所以,即.因此,滿足題意.故答案為:①②④【點(diǎn)睛】本題考查新定義題型、利用導(dǎo)數(shù)研究函數(shù)圖像,轉(zhuǎn)化與化歸思想,屬于中檔題16.【解析】
設(shè)等比數(shù)列的公比為,將已知條件等式轉(zhuǎn)化為關(guān)系式,求解即可.【詳解】設(shè)等比數(shù)列的公比為,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)的基本量運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.【解析】
原不等式等價(jià)于在恒成立,令,,求出在上的最小值后可得的取值范圍.【詳解】因?yàn)樵跁r(shí)恒成立,故在恒成立.令,由可得.令,,則為上的增函數(shù),故.故.故答案為:.【點(diǎn)睛】本題考查含參數(shù)的不等式的恒成立,對于此類問題,優(yōu)先考慮參變分離,把恒成立問題轉(zhuǎn)化為不含參數(shù)的新函數(shù)的最值問題,本題屬于基礎(chǔ)題.18.(1)見解析;(2).【解析】
(1)取的中點(diǎn),連接、,推導(dǎo)出四邊形為平行四邊形,可得出,由此能證明平面;(2)由,得平面,則點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),就是到平面的距離,也就是點(diǎn)到平面的距離,由此能求出直線與平面所成角的正弦值.【詳解】(1)取的中點(diǎn),連接、,、分別為、的中點(diǎn),則且,、均垂直于平面,且,則,且,所以,四邊形為平行四邊形,則,平面,平面,因此,平面;(2)由,平面,平面,平面,點(diǎn)到平面的距離等于點(diǎn)到平面的距離,在平面內(nèi)過點(diǎn)作于點(diǎn),平面,平面,,,,平面,即就是到平面的距離,也就是點(diǎn)到平面的距離,設(shè),則到平面的距離,,因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,考查線面角的正弦值的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是中檔題.19.(I)π;(II)-【解析】
(I)化簡得到fx(II)f(α2)=2sin【詳解】(I)f(x)==2sin2x+(II)f(α2)=2sinα∈(π6,π),故α+故α+π12∈sin(2α+【點(diǎn)睛】本題考查了三角函數(shù)的周期,三角恒等變換,意在考查學(xué)生的計(jì)算能力和綜合應(yīng)用能力.20.(1)(2)三個(gè)零點(diǎn)【解析】
(1)由題意知恒成立,構(gòu)造函數(shù),對函數(shù)求導(dǎo),求得函數(shù)最值,進(jìn)而得到結(jié)果;(2)當(dāng)時(shí)先對函數(shù)求導(dǎo)研究函數(shù)的單調(diào)性可得到函數(shù)有兩個(gè)極值點(diǎn),再證,.【詳解】(1)由得,由題意知恒成立,即,設(shè),,時(shí),遞減,時(shí),,遞增;故,即,故的取值范圍是.(2)當(dāng)時(shí),單調(diào),無極值;當(dāng)時(shí),,一方面,,且在遞減,所以在區(qū)間有一個(gè)零點(diǎn).另一方面,,設(shè),則,從而在遞增,則,即,又在遞增,所以在區(qū)間有一個(gè)零點(diǎn).因此,當(dāng)時(shí)在和各有一個(gè)零點(diǎn),將這兩個(gè)零點(diǎn)記為,,當(dāng)時(shí),即;當(dāng)時(shí),即;當(dāng)時(shí),即:從而在遞增,在遞減,在遞增;于是是函數(shù)的極大值點(diǎn),是函數(shù)的極小值點(diǎn).下面證明:,由得,即,由得,令,則,①當(dāng)時(shí),遞減,則,而,故;②當(dāng)時(shí),遞減,則,而,故;一方面,因?yàn)椋?,且在遞增,所以在上有一個(gè)零點(diǎn),即在上有一個(gè)零點(diǎn).另一方面,根據(jù)得,則有:,又,且在遞增,故在上有一個(gè)零點(diǎn),故在上有一個(gè)零點(diǎn).又,故有三個(gè)零點(diǎn).【點(diǎn)睛】本題考查函數(shù)的零點(diǎn),導(dǎo)數(shù)的綜合應(yīng)用.在研究函數(shù)零點(diǎn)時(shí),有一種方法是把函數(shù)的零點(diǎn)轉(zhuǎn)化為方程的解,再把方程的解轉(zhuǎn)化為函數(shù)圖象的交點(diǎn),特別是利用分離參數(shù)法轉(zhuǎn)化為動直線與函數(shù)圖象交點(diǎn)問題,這樣就可利用導(dǎo)數(shù)研究新函數(shù)的單調(diào)性
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國香香脆糖行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國電子式調(diào)節(jié)閥行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國新型多功能洗浴器行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國手持式割草機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國存貯設(shè)備行業(yè)投資前景及策略咨詢研究報(bào)告
- 醫(yī)療核心制度自查報(bào)告及整改措施
- 2025至2030年中國內(nèi)置式雙人電腦桌行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025至2030年中國Α-氧化鋁微粉行業(yè)投資前景及策略咨詢研究報(bào)告
- 2024年中國精梳棉毛兒童內(nèi)衣市場調(diào)查研究報(bào)告
- 2018-2024年中國鋁制餐具市場運(yùn)營態(tài)勢分析及投資前景預(yù)測報(bào)告
- 2024年6月浙江高考?xì)v史試卷(含答案解析)
- 2024年知識競賽-少先隊(duì)知識競賽考試近5年真題附答案
- 勞動合同(模版)4篇
- 保密工作會議領(lǐng)導(dǎo)講話稿
- 四年級數(shù)學(xué)上冊計(jì)算題過關(guān)訓(xùn)練共20天
- 貨物采購供貨方案(技術(shù)方案)
- 安全生產(chǎn)積分制管理制度
- 蘇教版小學(xué)三年級科學(xué)上冊單元測試題附答案(全冊)
- 《弘揚(yáng)教育家精神》專題課件
- 口腔門診醫(yī)院感染管理標(biāo)準(zhǔn)WST842-2024
- 2024年中考語文(北京卷)真題詳細(xì)解讀及評析
評論
0/150
提交評論