版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024-2025學(xué)年福建省福州第四中學(xué)下學(xué)期高三數(shù)學(xué)試題第二次月考考試試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知為銳角,且,則等于()A. B. C. D.3.我國著名數(shù)學(xué)家陳景潤(rùn)在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內(nèi)容是“每個(gè)大于的偶數(shù)可以表示為兩個(gè)素?cái)?shù)的和”(注:如果一個(gè)大于的整數(shù)除了和自身外無其他正因數(shù),則稱這個(gè)整數(shù)為素?cái)?shù)),在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,則的概率是()A. B. C. D.4.已知平面向量滿足,且,則所夾的銳角為()A. B. C. D.05.曲線上任意一點(diǎn)處的切線斜率的最小值為()A.3 B.2 C. D.16.的展開式中有理項(xiàng)有()A.項(xiàng) B.項(xiàng) C.項(xiàng) D.項(xiàng)7.一物體作變速直線運(yùn)動(dòng),其曲線如圖所示,則該物體在間的運(yùn)動(dòng)路程為()m.A.1 B. C. D.28.已知正方體的棱長(zhǎng)為,,,分別是棱,,的中點(diǎn),給出下列四個(gè)命題:①;②直線與直線所成角為;③過,,三點(diǎn)的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個(gè)數(shù)為()A. B. C. D.9.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.10.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.11.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.12.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.若正三棱柱的所有棱長(zhǎng)均為2,點(diǎn)為側(cè)棱上任意一點(diǎn),則四棱錐的體積為__________.14.不等式的解集為________15.已知橢圓C:1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,橢圓的焦距為2c,過C外一點(diǎn)P(c,2c)作線段PF1,PF2分別交橢圓C于點(diǎn)A、B,若|PA|=|AF1|,則_____.16.若雙曲線的離心率為,則雙曲線的漸近線方程為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)若,,且數(shù)列前項(xiàng)和為,求的取值范圍.18.(12分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國各城市中抽取了100個(gè)相同等級(jí)地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(tái)(以下簡(jiǎn)稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬件)頻數(shù)1223訂單:(單位:萬件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬件的城市為“業(yè)績(jī)突出城市”,填寫下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲外賣乙總計(jì)(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國各城市的訂單數(shù)(單位:萬件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問題:①從全國各城市中隨機(jī)抽取6個(gè)城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個(gè)數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬件的城市開展“訂外賣,搶紅包”的營銷活動(dòng)來提升業(yè)績(jī),據(jù)統(tǒng)計(jì),開展此活動(dòng)后城市每月外賣訂單數(shù)將提高到平均每月9萬件的水平,現(xiàn)從全國各月訂單數(shù)不超過7萬件的城市中采用分層抽樣的方法選出100個(gè)城市不開展?fàn)I銷活動(dòng),若每按一件外賣訂單平均可獲純利潤(rùn)5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個(gè)城市中開展?fàn)I銷活動(dòng)將比不開展?fàn)I銷活動(dòng)每月多盈利多少萬元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.19.(12分)2019年6月,國內(nèi)的運(yùn)營牌照開始發(fā)放.從到,我們國家的移動(dòng)通信業(yè)務(wù)用了不到20年的時(shí)間,完成了技術(shù)上的飛躍,躋身世界先進(jìn)水平.為了解高校學(xué)生對(duì)的消費(fèi)意愿,2019年8月,從某地在校大學(xué)生中隨機(jī)抽取了1000人進(jìn)行調(diào)查,樣本中各類用戶分布情況如下:用戶分類預(yù)計(jì)升級(jí)到的時(shí)段人數(shù)早期體驗(yàn)用戶2019年8月至2019年12月270人中期跟隨用戶2020年1月至2021年12月530人后期用戶2022年1月及以后200人我們將大學(xué)生升級(jí)時(shí)間的早晚與大學(xué)生愿意為套餐支付更多的費(fèi)用作比較,可得出下圖的關(guān)系(例如早期體驗(yàn)用戶中愿意為套餐多支付5元的人數(shù)占所有早期體驗(yàn)用戶的).(1)從該地高校大學(xué)生中隨機(jī)抽取1人,估計(jì)該學(xué)生愿意在2021年或2021年之前升級(jí)到的概率;(2)從樣本的早期體驗(yàn)用戶和中期跟隨用戶中各隨機(jī)抽取1人,以表示這2人中愿意為升級(jí)多支付10元或10元以上的人數(shù),求的分布列和數(shù)學(xué)期望;(3)2019年底,從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐,能否認(rèn)為樣本中早期體驗(yàn)用戶的人數(shù)有變化?說明理由.20.(12分)(某工廠生產(chǎn)零件A,工人甲生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產(chǎn)一件零件A,是一等品、二等品、三等品的概率分別為.己知生產(chǎn)一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據(jù)生產(chǎn)一件零件A給工廠帶來的效益的期望值判斷甲乙技術(shù)的好壞;(2)為鼓勵(lì)工人提高技術(shù),工廠進(jìn)行技術(shù)大賽,最后甲乙兩人進(jìn)入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產(chǎn)一件零件A,如果一方生產(chǎn)的零件A品級(jí)優(yōu)干另一方生產(chǎn)的零件,則該方得分1分,另一方得分-1分,如果兩人生產(chǎn)的零件A品級(jí)一樣,則兩方都不得分,當(dāng)一方總分為4分時(shí),比賽結(jié)束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時(shí),最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.21.(12分)已知正項(xiàng)數(shù)列的前項(xiàng)和.(1)若數(shù)列為等比數(shù)列,求數(shù)列的公比的值;(2)設(shè)正項(xiàng)數(shù)列的前項(xiàng)和為,若,且.①求數(shù)列的通項(xiàng)公式;②求證:.22.(10分)已知橢圓:()的離心率為,且橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合.過點(diǎn)的直線交橢圓于,兩點(diǎn),為坐標(biāo)原點(diǎn).(1)若直線過橢圓的上頂點(diǎn),求的面積;(2)若,分別為橢圓的左、右頂點(diǎn),直線,,的斜率分別為,,,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當(dāng),不充分故是必要不充分條件,答案選B本題考查了充分必要條件,屬于簡(jiǎn)單題.2.C【解析】
由可得,再利用計(jì)算即可.【詳解】因?yàn)椋?,所以,所?故選:C.本題考查二倍角公式的應(yīng)用,考查學(xué)生對(duì)三角函數(shù)式化簡(jiǎn)求值公式的靈活運(yùn)用的能力,屬于基礎(chǔ)題.3.B【解析】
先列舉出不超過的素?cái)?shù),并列舉出所有的基本事件以及事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素?cái)?shù)有:、、、、、,在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù),所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素?cái)?shù)中,隨機(jī)選取個(gè)不同的素?cái)?shù)、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.本題考查古典概型概率的計(jì)算,一般利用列舉法列舉出基本事件,考查計(jì)算能力,屬于基礎(chǔ)題.4.B【解析】
根據(jù)題意可得,利用向量的數(shù)量積即可求解夾角.【詳解】因?yàn)榧炊詩A角為故選:B本題考查了向量數(shù)量積求夾角,需掌握向量數(shù)量積的定義求法,屬于基礎(chǔ)題.5.A【解析】
根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍?hào)成立,所以上任意一點(diǎn)處的切線斜率的最小值為3.故選:A.本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計(jì)算能力.6.B【解析】
由二項(xiàng)展開式定理求出通項(xiàng),求出的指數(shù)為整數(shù)時(shí)的個(gè)數(shù),即可求解.【詳解】,,當(dāng),,,時(shí),為有理項(xiàng),共項(xiàng).故選:B.本題考查二項(xiàng)展開式項(xiàng)的特征,熟練掌握二項(xiàng)展開式的通項(xiàng)公式是解題的關(guān)鍵,屬于基礎(chǔ)題.7.C【解析】
由圖像用分段函數(shù)表示,該物體在間的運(yùn)動(dòng)路程可用定積分表示,計(jì)算即得解【詳解】由題中圖像可得,由變速直線運(yùn)動(dòng)的路程公式,可得.所以物體在間的運(yùn)動(dòng)路程是.故選:C本題考查了定積分的實(shí)際應(yīng)用,考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.8.C【解析】
畫出幾何體的圖形,然后轉(zhuǎn)化判斷四個(gè)命題的真假即可.【詳解】如圖;連接相關(guān)點(diǎn)的線段,為的中點(diǎn),連接,因?yàn)槭侵悬c(diǎn),可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點(diǎn)的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點(diǎn),所以,而,.所以三棱錐的體積為,④正確;故選:.本題考查命題的真假的判斷與應(yīng)用,涉及空間幾何體的體積,直線與平面的位置關(guān)系的應(yīng)用,平面的基本性質(zhì),是中檔題.9.C【解析】
求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.10.A【解析】
利用計(jì)算即可,其中表示事件A所包含的基本事件個(gè)數(shù),為基本事件總數(shù).【詳解】從7本作業(yè)本中任取兩本共有種不同的結(jié)果,其中,小明取到的均是自己的作業(yè)本有種不同結(jié)果,由古典概型的概率計(jì)算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.本題考查古典概型的概率計(jì)算問題,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.11.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.本題考查利用定義計(jì)算條件概率的問題,涉及到雙曲線的定義,是一道容易題.12.B【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn)計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡(jiǎn)單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
依題意得,再求點(diǎn)到平面的距離為點(diǎn)到直線的距離,用公式所以即可得出答案.【詳解】解:正三棱柱的所有棱長(zhǎng)均為2,則,點(diǎn)到平面的距離為點(diǎn)到直線的距離所以,所以.故答案為:本題考查椎體的體積公式,考查運(yùn)算能力,是基礎(chǔ)題.14.【解析】
通過平方,將無理不等式化為有理不等式求解即可?!驹斀狻坑傻茫獾?,所以解集是。本題主要考查無理不等式的解法。15.【解析】
根據(jù)條件可得判斷OA∥PF2,且|PF2|=2|OA|,從而得到點(diǎn)A為橢圓上頂點(diǎn),則有b=c,解出B的坐標(biāo)即可得到比值.【詳解】因?yàn)閨PA|=|AF1|,所以點(diǎn)A是線段PF1的中點(diǎn),又因?yàn)辄c(diǎn)O為線段F1F2的中點(diǎn),所以O(shè)A∥PF2,且|PF2|=2|OA|,因?yàn)辄c(diǎn)P(c,2c),所以PF2⊥x軸,則|PF2|=2c,所以O(shè)A⊥x軸,則點(diǎn)A為橢圓上頂點(diǎn),所以|OA|=b,則2b=2c,所以b=c,ac,設(shè)B(c,m)(m>0),則,解得mc,所以|BF2|c,則.故答案為:2.本題考查橢圓的基本性質(zhì),考查直線位置關(guān)系的判斷,方程思想,屬于中檔題.16.【解析】
利用,得到的關(guān)系式,然后代入雙曲線的漸近線方程即可求解.【詳解】因?yàn)殡p曲線的離心率為,所以,即,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線方程為.故答案為:本題考查雙曲線的幾何性質(zhì);考查運(yùn)算求解能力;熟練掌握雙曲線的幾何性質(zhì)是求解本題的關(guān)鍵;屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1)由,可求,然后由時(shí),可得,根據(jù)等比數(shù)列的通項(xiàng)可求(2)由,而,利用裂項(xiàng)相消法可求.【詳解】(1)當(dāng)時(shí),,解得,當(dāng)時(shí),①②②①得,即,數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,;(2)∴,∴,,.本題考查遞推公式在數(shù)列的通項(xiàng)求解中的應(yīng)用,等比數(shù)列的通項(xiàng)公式、裂項(xiàng)求和方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力.18.(1)見解析,有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①4.911②100萬元.【解析】
(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個(gè)外賣平臺(tái)中月訂單不低于13萬件的城市數(shù)量,即可完善列聯(lián)表.通過計(jì)算的觀測(cè)值,即可結(jié)合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結(jié)合正態(tài)分布曲線性質(zhì)可求得,再由二項(xiàng)分布的數(shù)學(xué)期望求法求解.②訂單數(shù)低于7萬件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計(jì)算出開展?fàn)I銷活動(dòng)與不開展?fàn)I銷活動(dòng)的利潤(rùn),比較即可得解.【詳解】(1)對(duì)于外賣甲:月訂單不低于13萬件的城市數(shù)量為,對(duì)于外賣乙:月訂單不低于13萬件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲4060100外賣乙5248100總計(jì)92108200且的觀測(cè)值為,∴有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①樣本平均數(shù),故==,,的數(shù)學(xué)期望,②由分層抽樣知,則100個(gè)城市中每月訂單數(shù)在區(qū)間內(nèi)的有(個(gè)),每月訂單數(shù)在區(qū)間內(nèi)的有(個(gè)),若不開展?fàn)I銷活動(dòng),則一個(gè)月的利潤(rùn)為(萬元),若開展?fàn)I銷活動(dòng),則一個(gè)月的利潤(rùn)為(萬元),這100個(gè)城市中開展?fàn)I銷活動(dòng)比不開展每月多盈利100萬元.本題考查了頻率分布直方圖與頻率分布表的應(yīng)用,完善列聯(lián)表并計(jì)算的觀測(cè)值作出判斷,分層抽樣的簡(jiǎn)單應(yīng)用,綜合性強(qiáng),屬于中檔題.19.(1)(2)詳見解析(3)事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化,詳見解析【解析】
(1)由從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到,結(jié)合古典摡型的概率計(jì)算公式,即可求解;(2)由題意的所有可能值為,利用相互獨(dú)立事件的概率計(jì)算公式,分別求得相應(yīng)的概率,得到隨機(jī)變量的分布列,利用期望的公式,即可求解.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,得到七概率為,即可得到結(jié)論.【詳解】(1)由題意可知,從高校大學(xué)生中隨機(jī)抽取1人,該學(xué)生在2021年或2021年之前升級(jí)到的概率估計(jì)為樣本中早期體驗(yàn)用戶和中期跟隨用戶的頻率,即.(2)由題意的所有可能值為,記事件為“從早期體驗(yàn)用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,事件為“從中期跟隨用戶中隨機(jī)抽取1人,該學(xué)生愿意為升級(jí)多支付10元或10元以上”,由題意可知,事件,相互獨(dú)立,且,,所以,,,所以的分布列為0120.180.490.33故的數(shù)學(xué)期望.(3)設(shè)事件為“從這1000人的樣本中隨機(jī)抽取3人,這三位學(xué)生都已簽約套餐”,那么.回答一:事件雖然發(fā)生概率小,但是發(fā)生可能性為0.02,所以認(rèn)為早期體驗(yàn)用戶沒有發(fā)生變化.回答二:事件發(fā)生概率小,所以可以認(rèn)為早期體驗(yàn)用戶人數(shù)增加.本題主要考查了離散型隨機(jī)變量的分布列,數(shù)學(xué)期望的求解及應(yīng)用,對(duì)于求離散型隨機(jī)變量概率分布列問題首先要清楚離散型隨機(jī)變量的可能取值,計(jì)算得出概率,列出離散型隨機(jī)變量概率分布列,最后按照數(shù)學(xué)期望公式計(jì)算出數(shù)學(xué)期望,其中列出離散型隨機(jī)變量概率分布列及計(jì)算數(shù)學(xué)期望是理科高考數(shù)學(xué)必考問題.20.(1)乙的技術(shù)更好,見解析(2)①,;②【解析】
(1)列出分布列,求出期望,比較大小即可;(2)①直接根據(jù)概率的意義可得P0,P8;②設(shè)每輪比賽甲得分為,求出每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,可的,可推出是等差數(shù)列,根據(jù)可得答案.【詳解】(1)記甲乙各生產(chǎn)一件零件給工廠帶來的效益分別為元、元,隨機(jī)變量,的分布列分別為10521052所以,,所以,即乙的技術(shù)更好(2)①表示的是甲得分時(shí),甲最終獲勝的概率,所以,表示的是甲得4分時(shí),甲最終獲勝的概率,所以;②設(shè)每輪比賽甲得分為,則每輪比賽甲得1分的概率,甲得0分的概率,甲得分的概率,所以甲得時(shí),最終獲勝有以下三種情況:(1)下一輪得1分并最終獲勝,概率為;(2)下一輪得0分并最終獲勝,概率為;(3)下一輪得分并最終獲勝,概率為;所以,所以是等差數(shù)列,則,即決賽甲獲勝的概率是.本題考查離散型隨機(jī)變量的分布列和期望,考查數(shù)列遞推關(guān)系的應(yīng)用,是一道難度較大的題目.21.(1);(2)①;②詳見解析.【解析】
(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度環(huán)保項(xiàng)目大額借款協(xié)議及環(huán)境監(jiān)測(cè)合同3篇
- 2025版苗木采購與園林景觀施工一體化服務(wù)合同4篇
- 二零二五年度標(biāo)準(zhǔn)公司租賃合同范本2篇
- 2025年度鋼構(gòu)工程后期維護(hù)保養(yǎng)合同范本2篇
- 二零二五版農(nóng)村房屋買賣糾紛仲裁合同4篇
- 2025年度內(nèi)參報(bào)告撰寫與行業(yè)研究合同4篇
- 2025年山地承包及森林資源可持續(xù)利用合同4篇
- 2025年度個(gè)人貸款合同變更條款模板2篇
- 二零二五年度木材產(chǎn)業(yè)園區(qū)建設(shè)投資合同4篇
- 男性生殖系統(tǒng)健康知識(shí)
- TSG ZF003-2011《爆破片裝置安全技術(shù)監(jiān)察規(guī)程》
- 護(hù)理服務(wù)在產(chǎn)科中的應(yīng)用課件
- 流行文化對(duì)青少年價(jià)值觀的影響研究
- 2024年代理記賬工作總結(jié)6篇
- 電氣工程預(yù)算實(shí)例:清單與計(jì)價(jià)樣本
- VOC廢氣治理工程中電化學(xué)氧化技術(shù)的研究與應(yīng)用
- 煤礦機(jī)電設(shè)備培訓(xùn)課件
- 科技論文圖表等規(guī)范表達(dá)
- 高考寫作指導(dǎo)議論文標(biāo)準(zhǔn)語段寫作課件32張
- 2021年普通高等學(xué)校招生全國英語統(tǒng)一考試模擬演練八省聯(lián)考解析
- 紅色研學(xué)旅行課程的設(shè)計(jì)與實(shí)踐
評(píng)論
0/150
提交評(píng)論