2024-2025學年福建省莆田市第六中學高三3月網絡模擬考試數(shù)學試題含解析_第1頁
2024-2025學年福建省莆田市第六中學高三3月網絡模擬考試數(shù)學試題含解析_第2頁
2024-2025學年福建省莆田市第六中學高三3月網絡模擬考試數(shù)學試題含解析_第3頁
2024-2025學年福建省莆田市第六中學高三3月網絡模擬考試數(shù)學試題含解析_第4頁
2024-2025學年福建省莆田市第六中學高三3月網絡模擬考試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年福建省莆田市第六中學高三3月網絡模擬考試數(shù)學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件2.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.3.已知函數(shù)的值域為,函數(shù),則的圖象的對稱中心為()A. B.C. D.4.已知,則不等式的解集是()A. B. C. D.5.已知函數(shù),,其中為自然對數(shù)的底數(shù),若存在實數(shù),使成立,則實數(shù)的值為()A. B. C. D.6.已知函數(shù)(),若函數(shù)有三個零點,則的取值范圍是()A. B.C. D.7.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件8.若,滿足約束條件,則的最大值是()A. B. C.13 D.9.定義在R上的函數(shù),,若在區(qū)間上為增函數(shù),且存在,使得.則下列不等式不一定成立的是()A. B.C. D.10.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.111.已知復數(shù),其中,,是虛數(shù)單位,則()A. B. C. D.12.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知是同一球面上的四個點,其中平面,是正三角形,,則該球的表面積為______.14.已知關于空間兩條不同直線m、n,兩個不同平面、,有下列四個命題:①若且,則;②若且,則;③若且,則;④若,且,則.其中正確命題的序號為______.15.從集合中隨機取一個元素,記為,從集合中隨機取一個元素,記為,則的概率為_______.16.已知平面向量,,且,則向量與的夾角的大小為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,四邊形為菱形,為與的交點,平面.(1)證明:平面平面;(2)若,,三棱錐的體積為,求菱形的邊長.18.(12分)已知函數(shù).(1)求的單調區(qū)間;(2)討論零點的個數(shù).19.(12分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.20.(12分)已知.(1)求不等式的解集;(2)記的最小值為,且正實數(shù)滿足.證明:.21.(12分)在直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,曲線的極坐標方程為.(1)求曲線的直角坐標方程和曲線的參數(shù)方程;(2)設曲線與曲線在第二象限的交點為,曲線與軸的交點為,點,求的周長的最大值.22.(10分)如圖,在四棱錐中,底面是矩形,四條側棱長均相等.(1)求證:平面;(2)求證:平面平面.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

首先利用二倍角正切公式由,求出,再根據(jù)充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.2.D【解析】

根據(jù)面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.本題考查了面面垂直的判斷問題,屬于基礎題.3.B【解析】

由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B本題考查三角函數(shù)的圖像及性質,考查函數(shù)的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為04.A【解析】

構造函數(shù),通過分析的單調性和對稱性,求得不等式的解集.【詳解】構造函數(shù),是單調遞增函數(shù),且向左移動一個單位得到,的定義域為,且,所以為奇函數(shù),圖像關于原點對稱,所以圖像關于對稱.不等式等價于,等價于,注意到,結合圖像關于對稱和單調遞增可知.所以不等式的解集是.故選:A本小題主要考查根據(jù)函數(shù)的單調性和對稱性解不等式,屬于中檔題.5.A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數(shù),(﹣1,+∞)上是增函數(shù),故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當?shù)忍柾瑫r成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.6.A【解析】

分段求解函數(shù)零點,數(shù)形結合,分類討論即可求得結果.【詳解】作出和,的圖像如下所示:函數(shù)有三個零點,等價于與有三個交點,又因為,且由圖可知,當時與有兩個交點,故只需當時,與有一個交點即可.若當時,時,顯然??=??(??)與??=4|??|有一個交點??,故滿足題意;時,顯然??=??(??)與??=4|??|沒有交點,故不滿足題意;時,顯然??=??(??)與??=4|??|也沒有交點,故不滿足題意;時,顯然與有一個交點,故滿足題意.綜上所述,要滿足題意,只需.故選:A.本題考查由函數(shù)零點的個數(shù)求參數(shù)范圍,屬中檔題.7.A【解析】

根據(jù)冪函數(shù)定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數(shù)為冪函數(shù)時,,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應用,屬于基礎題.8.C【解析】

由已知畫出可行域,利用目標函數(shù)的幾何意義求最大值.【詳解】解:表示可行域內的點到坐標原點的距離的平方,畫出不等式組表示的可行域,如圖,由解得即點到坐標原點的距離最大,即.故選:.本題考查線性規(guī)劃問題,考查數(shù)形結合的數(shù)學思想以及運算求解能力,屬于基礎題.9.D【解析】

根據(jù)題意判斷出函數(shù)的單調性,從而根據(jù)單調性對選項逐個判斷即可.【詳解】由條件可得函數(shù)關于直線對稱;在,上單調遞增,且在時使得;又,,所以選項成立;,比離對稱軸遠,可得,選項成立;,,可知比離對稱軸遠,選項成立;,符號不定,,無法比較大小,不一定成立.故選:.本題考查了函數(shù)的基本性質及其應用,意在考查學生對這些知識的理解掌握水平和分析推理能力.10.B【解析】

根據(jù)題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.11.D【解析】試題分析:由,得,則,故選D.考點:1、復數(shù)的運算;2、復數(shù)的模.12.C【解析】

當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調性,根據(jù)單調性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進而求得外接球的表面積.【詳解】設是等邊三角形的外心,則球心在其正上方處.設,由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:本小題主要考查幾何體外接球表面積的計算,屬于基礎題.14.③④【解析】

由直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義判斷.【詳解】①若且,的位置關系是平行、相交或異面,①錯;②若且,則或者,②錯;③若,設過的平面與交于直線,則,又,則,∴,③正確;④若,且,由線面垂直的定義知,④正確.故答案為:③④.本題考查直線與直線的位置關系,直線與平面的位置關系,面面垂直的判定定理和線面垂直的定義,考查空間線面間的位置關系,掌握空間線線、線面、面面位置關系是解題基礎.15.【解析】

先求出隨機抽取a,b的所有事件數(shù),再求出滿足的事件數(shù),根據(jù)古典概型公式求出結果.【詳解】解:從集合中隨機取一個元素,記為,從集合中隨機取一個元素,記為,則的事件數(shù)為9個,即為,,,其中滿足的有,,,共有8個,故的概率為.本題考查了古典概型的計算,解題的關鍵是準確列舉出所有事件數(shù).16.【解析】

由,解得,進而求出,即可得出結果.【詳解】解:因為,所以,解得,所以,所以向量與的夾角的大小為.都答案為:.本題主要考查平面向量的運算,平面向量垂直,向量夾角等基礎知識;考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)1【解析】

(1)由菱形的性質和線面垂直的性質,可得平面,再由面面垂直的判定定理,即可得證;(2)設,分別求得,和的長,運用三棱錐的體積公式,計算可得所求值.【詳解】(1)四邊形為菱形,,平面,,又,平面,又平面,平面平面;(2)設,在菱形中,由,可得,,,,在中,可得,由面,知,為直角三角形,可得,三棱錐的體積,,菱形的邊長為1.本題考查面面垂直的判定,注意運用線面垂直轉化,考查三棱錐的體積的求法,考查化簡運算能力和推理能力,意在考查學生對這些知識的理解掌握水平.18.(1)見解析(2)見解析【解析】

(1)求導后分析導函數(shù)的正負再判斷單調性即可.(2),有零點等價于方程實數(shù)根,再換元將原方程轉化為,再求導分析的圖像數(shù)形結合求解即可.【詳解】(1)的定義域為,,當時,,所以在單調遞減;當時,,所以在單調遞增,所以的減區(qū)間為,增區(qū)間為.(2),有零點等價于方程實數(shù)根,令則原方程轉化為,令,.令,,∴,,,,,當時,,當時,.如圖可知①當時,有唯一零點,即有唯一零點;②當時,有兩個零點,即有兩個零點;③當時,有唯一零點,即有唯一零點;④時,此時無零點,即此時無零點.本題主要考查了利用導數(shù)分析函數(shù)的單調性的方法,同時也考查了利用導數(shù)分析函數(shù)零點的問題,屬于中檔題.19.(1)證明見解析;(2)【解析】

(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出平面BEF的法向量,平面的法向量,算出即可.【詳解】(1)∵平面ABCD,平面ABCD.∴.又∵底面ABCD是菱形,∴.∵,∴平面BDE,設AC,BD交于O,取BE的中點G,連FG,OG,,,四邊形OCFG是平行四邊形,平面BDE∴平面BDE,又因平面BEF,∴平面平面BDE.(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系∵BE與平面ABCD所成的角為,,,,,,.,設平面BEF的法向量為,,,設平面的法向量設二面角的大小為..本題考查線面垂直證面面垂直、面面所成角的計算,考查學生的計算能力,解決此類問題最關鍵是準確寫出點的坐標,是一道中檔題.20.(1)或;(2)見解析【解析】

(1)根據(jù),利用零點分段法解不等式,或作出函數(shù)的圖像,利用函數(shù)的圖像解不等式;(2)由(1)作出的函數(shù)圖像求出的最小值為,可知,代入中,然后給等式兩邊同乘以,再將寫成后,化簡變形,再用均值不等式可證明.【詳解】(1)解法一:1°時,,即,解得;2°時,,即,解得;3°時,,即,解得.綜上可得,不等式的解集為或.解法二:由作出圖象如下:由圖象可得不等式的解集為或.(2)由所以在上單調遞減,在上單調遞增,所以,正實數(shù)滿足,則,即,(當且僅當即時取等號)故,得證.此題考查了絕對值不等式的解法,絕對值不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論