2024-2025學(xué)年浙江省衢州一中高考數(shù)學(xué)試題考前模擬題含解析_第1頁
2024-2025學(xué)年浙江省衢州一中高考數(shù)學(xué)試題考前模擬題含解析_第2頁
2024-2025學(xué)年浙江省衢州一中高考數(shù)學(xué)試題考前模擬題含解析_第3頁
2024-2025學(xué)年浙江省衢州一中高考數(shù)學(xué)試題考前模擬題含解析_第4頁
2024-2025學(xué)年浙江省衢州一中高考數(shù)學(xué)試題考前模擬題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024-2025學(xué)年浙江省衢州一中高考數(shù)學(xué)試題考前模擬題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,正方體的棱長為1,動(dòng)點(diǎn)在線段上,、分別是、的中點(diǎn),則下列結(jié)論中錯(cuò)誤的是()A., B.存在點(diǎn),使得平面平面C.平面 D.三棱錐的體積為定值2.已知,函數(shù)在區(qū)間內(nèi)沒有最值,給出下列四個(gè)結(jié)論:①在上單調(diào)遞增;②③在上沒有零點(diǎn);④在上只有一個(gè)零點(diǎn).其中所有正確結(jié)論的編號(hào)是()A.②④ B.①③ C.②③ D.①②④3.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.84.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件5.過直線上一點(diǎn)作圓的兩條切線,,,為切點(diǎn),當(dāng)直線,關(guān)于直線對(duì)稱時(shí),()A. B. C. D.6.已知實(shí)數(shù),則的大小關(guān)系是()A. B. C. D.7.已知函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)椋ǎ〢. B.C. D.8.已知正四面體外接球的體積為,則這個(gè)四面體的表面積為()A. B. C. D.9.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有10.已知數(shù)列的通項(xiàng)公式是,則()A.0 B.55 C.66 D.7811.已知函數(shù),則下列判斷錯(cuò)誤的是()A.的最小正周期為 B.的值域?yàn)镃.的圖象關(guān)于直線對(duì)稱 D.的圖象關(guān)于點(diǎn)對(duì)稱12.已知定義在上函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,且,若,則()A.0 B.1 C.673 D.674二、填空題:本題共4小題,每小題5分,共20分。13.四邊形中,,,,,則的最小值是______.14.若在上單調(diào)遞減,則的取值范圍是_______15.已知數(shù)列的各項(xiàng)均為正數(shù),記為數(shù)列的前項(xiàng)和,若,,則______.16.設(shè)為定義在上的偶函數(shù),當(dāng)時(shí),(為常數(shù)),若,則實(shí)數(shù)的值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,平面,底面ABCD滿足AD∥BC,,,E為AD的中點(diǎn),AC與BE的交點(diǎn)為O.(1)設(shè)H是線段BE上的動(dòng)點(diǎn),證明:三棱錐的體積是定值;(2)求四棱錐的體積;(3)求直線BC與平面PBD所成角的余弦值.18.(12分)已知函數(shù).(1)解不等式;(2)記函數(shù)的最小值為,正實(shí)數(shù)、滿足,求證:.19.(12分)第十三屆全國人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考20.(12分)橢圓的右焦點(diǎn),過點(diǎn)且與軸垂直的直線被橢圓截得的弦長為.(1)求橢圓的方程;(2)過點(diǎn)且斜率不為0的直線與橢圓交于,兩點(diǎn).為坐標(biāo)原點(diǎn),為橢圓的右頂點(diǎn),求四邊形面積的最大值.21.(12分)在中,角所對(duì)的邊分別是,且.(1)求;(2)若,求.22.(10分)在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;(2)設(shè)直線與曲線相交于兩點(diǎn),的頂點(diǎn)也在曲線上運(yùn)動(dòng),求面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

根據(jù)平行的傳遞性判斷A;根據(jù)面面平行的定義判斷B;根據(jù)線面垂直的判定定理判斷C;由三棱錐以三角形為底,則高和底面積都為定值,判斷D.【詳解】在A中,因?yàn)榉謩e是中點(diǎn),所以,故A正確;在B中,由于直線與平面有交點(diǎn),所以不存在點(diǎn),使得平面平面,故B錯(cuò)誤;在C中,由平面幾何得,根據(jù)線面垂直的性質(zhì)得出,結(jié)合線面垂直的判定定理得出平面,故C正確;在D中,三棱錐以三角形為底,則高和底面積都為定值,即三棱錐的體積為定值,故D正確;故選:B本題主要考查了判斷面面平行,線面垂直等,屬于中檔題.2.A【解析】

先根據(jù)函數(shù)在區(qū)間內(nèi)沒有最值求出或.再根據(jù)已知求出,判斷函數(shù)的單調(diào)性和零點(diǎn)情況得解.【詳解】因?yàn)楹瘮?shù)在區(qū)間內(nèi)沒有最值.所以,或解得或.又,所以.令.可得.且在上單調(diào)遞減.當(dāng)時(shí),,且,所以在上只有一個(gè)零點(diǎn).所以正確結(jié)論的編號(hào)②④故選:A.本題主要考查三角函數(shù)的圖象和性質(zhì),考查函數(shù)的零點(diǎn)問題,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.3.B【解析】

建立平面直角坐標(biāo)系,將已知條件轉(zhuǎn)化為所設(shè)未知量的關(guān)系式,再將的最小值轉(zhuǎn)化為用該關(guān)系式表達(dá)的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標(biāo)系如下圖所示,設(shè),,且,由于,所以..所以,即..當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí)由得,當(dāng)時(shí),有最小值為,即,,解得.所以當(dāng)且僅當(dāng)時(shí)有最小值為.故選:B本小題主要考查向量的位置關(guān)系、向量的模,考查基本不等式的運(yùn)用,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于難題.4.A【解析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結(jié)論.【詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.本題考查了線面和面面垂直的判定與性質(zhì)定理、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力.5.C【解析】

判斷圓心與直線的關(guān)系,確定直線,關(guān)于直線對(duì)稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質(zhì)求出,得,從而得.【詳解】如圖,設(shè)圓的圓心為,半徑為,點(diǎn)不在直線上,要滿足直線,關(guān)于直線對(duì)稱,則必垂直于直線,∴,設(shè),則,,∴,.故選:C.本題考查直線與圓的位置關(guān)系,考查直線的對(duì)稱性,解題關(guān)鍵是由圓的兩條切線關(guān)于直線對(duì)稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.6.B【解析】

根據(jù),利用指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.7.A【解析】試題分析:由題意,得,解得,故選A.考點(diǎn):函數(shù)的定義域.8.B【解析】

設(shè)正四面體ABCD的外接球的半徑R,將該正四面體放入一個(gè)正方體內(nèi),使得每條棱恰好為正方體的面對(duì)角線,根據(jù)正方體和正四面體的外接球?yàn)橥粋€(gè)球計(jì)算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個(gè)正方體內(nèi),設(shè)正方體的棱長為a,如圖所示,設(shè)正四面體ABCD的外接球的半徑為R,則,得.因?yàn)檎拿骟wABCD的外接球和正方體的外接球是同一個(gè)球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對(duì)角線長,所以,正四面體ABCD的棱長為,因此,這個(gè)正四面體的表面積為.故選:B.本題考查球的內(nèi)接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯(lián)系起來,考查計(jì)算能力,屬于中檔題.9.C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.10.D【解析】

先分為奇數(shù)和偶數(shù)兩種情況計(jì)算出的值,可進(jìn)一步得到數(shù)列的通項(xiàng)公式,然后代入轉(zhuǎn)化計(jì)算,再根據(jù)等差數(shù)列求和公式計(jì)算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),所以當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,所以故選:D此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.11.D【解析】

先將函數(shù)化為,再由三角函數(shù)的性質(zhì),逐項(xiàng)判斷,即可得出結(jié)果.【詳解】可得對(duì)于A,的最小正周期為,故A正確;對(duì)于B,由,可得,故B正確;對(duì)于C,正弦函數(shù)對(duì)稱軸可得:解得:,當(dāng),,故C正確;對(duì)于D,正弦函數(shù)對(duì)稱中心的橫坐標(biāo)為:解得:若圖象關(guān)于點(diǎn)對(duì)稱,則解得:,故D錯(cuò)誤;故選:D.本題考查三角恒等變換,三角函數(shù)的性質(zhì),熟記三角函數(shù)基本公式和基本性質(zhì),考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.12.B【解析】

由題知為奇函數(shù),且可得函數(shù)的周期為3,分別求出知函數(shù)在一個(gè)周期內(nèi)的和是0,利用函數(shù)周期性對(duì)所求式子進(jìn)行化簡可得.【詳解】因?yàn)闉槠婧瘮?shù),故;因?yàn)?,故,可知函?shù)的周期為3;在中,令,故,故函數(shù)在一個(gè)周期內(nèi)的函數(shù)值和為0,故.故選:B.本題考查函數(shù)奇偶性與周期性綜合問題.其解題思路:函數(shù)的奇偶性與周期性相結(jié)合的問題多考查求值問題,常利用奇偶性及周期性進(jìn)行變換,將所求函數(shù)值的自變量轉(zhuǎn)化到已知解析式的函數(shù)定義域內(nèi)求解.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

在中利用正弦定理得出,進(jìn)而可知,當(dāng)時(shí),取最小值,進(jìn)而計(jì)算出結(jié)果.【詳解】,如圖,在中,由正弦定理可得,即,故當(dāng)時(shí),取到最小值為.故答案為:.本題考查解三角形,同時(shí)也考查了常見的三角函數(shù)值,考查邏輯推理能力與計(jì)算能力,屬于中檔題.14.【解析】

由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時(shí),顯然,符合題意;當(dāng)時(shí),在恒成立,∴,∴,故答案為:.本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.15.63【解析】

對(duì)進(jìn)行化簡,可得,再根據(jù)等比數(shù)列前項(xiàng)和公式進(jìn)行求解即可【詳解】由數(shù)列為首項(xiàng)為,公比的等比數(shù)列,所以63本題考查等比數(shù)列基本量的求法,當(dāng)處理復(fù)雜因式時(shí),常用基本方法為:因式分解,約分。但解題本質(zhì)還是圍繞等差和等比的基本性質(zhì)16.1【解析】

根據(jù)為定義在上的偶函數(shù),得,再根據(jù)當(dāng)時(shí),(為常數(shù))求解.【詳解】因?yàn)闉槎x在上的偶函數(shù),所以,又因?yàn)楫?dāng)時(shí),,所以,所以實(shí)數(shù)的值為1.故答案為:1本題主要考查函數(shù)奇偶性的應(yīng)用,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)(3)【解析】

(1)因?yàn)榈酌鍭BCD為梯形,且,所以四邊形BCDE為平行四邊形,則BE∥CD,又平面,平面,所以平面,又因?yàn)镠為線段BE上的動(dòng)點(diǎn),的面積是定值,從而三棱錐的體積是定值.(2)因?yàn)槠矫?,所以,結(jié)合BE∥CD,所以,又因?yàn)?,,且E為AD的中點(diǎn),所以四邊形ABCE為正方形,所以,結(jié)合,則平面,連接,則,因?yàn)槠矫?,所以,因?yàn)?,所以是等腰直角三角形,O為斜邊AC上的中點(diǎn),所以,且,所以平面,所以PO是四棱錐的高,又因?yàn)樘菪蜛BCD的面積為,在中,,所以.(3)以O(shè)為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,如圖所示,則B(,0,0),C(0,,0),D(,,0),P(0,0,),則,設(shè)平面PBD的法向量為,則即則,令,得到,設(shè)BC與平面PBD所成的角為,則,所以,所以直線BC與平面PBD所成角的余弦值為.18.(1);(2)見解析.【解析】

(1)分、、三種情況解不等式,綜合可得出原不等式的的解集;(2)利用絕對(duì)值三角不等式可求得函數(shù)的最小值為,進(jìn)而可得出,再將代數(shù)式與相乘,利用基本不等式求得的最小值,進(jìn)而可證得結(jié)論成立.【詳解】(1)當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí);當(dāng)時(shí),由,得,即,解得,此時(shí).綜上所述,不等式的解集為;(2),當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,.所以,當(dāng)且僅當(dāng),即,時(shí)等號(hào)成立,所以.所以,即.本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用基本不等式證明不等式成立,涉及絕對(duì)值三角不等式的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.19.(1)有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.見解析(2)分布列見解析,期望為1.【解析】

(1)由在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為可得列聯(lián)表,然后計(jì)算后可得結(jié)論;(2)由已知的取值分別為,分別計(jì)算概率得分布列,由公式計(jì)算出期望.【詳解】解:(1)根據(jù)在抽取的戶居民中隨機(jī)抽取戶,到分類意識(shí)強(qiáng)的概率為,可得分類意識(shí)強(qiáng)的有戶,故可得列聯(lián)表如下:分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)因?yàn)榈挠^測值,所以有的把握認(rèn)為居民分類意識(shí)強(qiáng)與政府宣傳普及工作有很大關(guān)系.(2)現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論