版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè),分別為雙曲線(a>0,b>0)的左、右焦點(diǎn),過點(diǎn)作圓的切線與雙曲線的左支交于點(diǎn)P,若,則雙曲線的離心率為()A. B. C. D.2.已知三棱錐的體積為2,是邊長為2的等邊三角形,且三棱錐的外接球的球心恰好是中點(diǎn),則球的表面積為()A. B. C. D.3.已知雙曲線的漸近線方程為,且其右焦點(diǎn)為,則雙曲線的方程為()A. B. C. D.4.為了加強(qiáng)“精準(zhǔn)扶貧”,實(shí)現(xiàn)偉大復(fù)興的“中國夢(mèng)”,某大學(xué)派遣甲、乙、丙、丁、戊五位同學(xué)參加三個(gè)貧困縣的調(diào)研工作,每個(gè)縣至少去1人,且甲、乙兩人約定去同一個(gè)貧困縣,則不同的派遣方案共有()A.24 B.36 C.48 D.645.設(shè)是虛數(shù)單位,復(fù)數(shù)()A. B. C. D.6.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.7.函數(shù)與的圖象上存在關(guān)于直線對(duì)稱的點(diǎn),則的取值范圍是()A. B. C. D.8.函數(shù)在上的圖象大致為()A. B.C. D.9.設(shè)函數(shù)定義域?yàn)槿w實(shí)數(shù),令.有以下6個(gè)論斷:①是奇函數(shù)時(shí),是奇函數(shù);②是偶函數(shù)時(shí),是奇函數(shù);③是偶函數(shù)時(shí),是偶函數(shù);④是奇函數(shù)時(shí),是偶函數(shù)⑤是偶函數(shù);⑥對(duì)任意的實(shí)數(shù),.那么正確論斷的編號(hào)是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤10.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.11.函數(shù)的圖象大致為()A. B.C. D.12.已知為定義在上的偶函數(shù),當(dāng)時(shí),,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前項(xiàng)和為,且對(duì)任意正整數(shù),都有,則___14.若函數(shù),則__________;__________.15.已知定義在上的函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱,,若函數(shù)圖象與函數(shù)圖象的交點(diǎn)為,則_____.16.在平面直角坐標(biāo)系中,已知圓及點(diǎn),設(shè)點(diǎn)是圓上的動(dòng)點(diǎn),在中,若的角平分線與相交于點(diǎn),則的取值范圍是_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某市計(jì)劃在一片空地上建一個(gè)集購物、餐飲、娛樂為一體的大型綜合園區(qū),如圖,已知兩個(gè)購物廣場(chǎng)的占地都呈正方形,它們的面積分別為13公頃和8公頃;美食城和歡樂大世界的占地也都呈正方形,分別記它們的面積為公頃和公頃;由購物廣場(chǎng)、美食城和歡樂大世界圍成的兩塊公共綠地都呈三角形,分別記它們的面積為公頃和公頃.(1)設(shè),用關(guān)于的函數(shù)表示,并求在區(qū)間上的最大值的近似值(精確到0.001公頃);(2)如果,并且,試分別求出、、、的值.18.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.19.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點(diǎn).(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.20.(12分)在ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知,(Ⅰ)求的大小;(Ⅱ)若,求面積的最大值.21.(12分)我國在2018年社保又出新的好消息,之前流動(dòng)就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡化手續(xù),深得流動(dòng)就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:時(shí)間人數(shù)156090754515(1)若300名辦理社保的人員中流動(dòng)人員210人,非流動(dòng)人員90人,若辦理時(shí)間超過4天的人員里非流動(dòng)人員有60人,請(qǐng)完成辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).列聯(lián)表如下流動(dòng)人員非流動(dòng)人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過4天辦理社保手續(xù)所需時(shí)間超過4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動(dòng)人員中利用分層抽樣,抽取12名流動(dòng)人員召開座談會(huì),其中3人要求交書面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87922.(10分)已知在ΔABC中,角A,B,C的對(duì)邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,根據(jù)切線的性質(zhì)可得,且,再由和雙曲線的定義可得,得出為中點(diǎn),則有,得到,即可求解.【詳解】設(shè)過點(diǎn)作圓的切線的切點(diǎn)為,,所以是中點(diǎn),,,.故選:C.【點(diǎn)睛】本題考查雙曲線的性質(zhì)、雙曲線定義、圓的切線性質(zhì),意在考查直觀想象、邏輯推理和數(shù)學(xué)計(jì)算能力,屬于中檔題.2.A【解析】
根據(jù)是中點(diǎn)這一條件,將棱錐的高轉(zhuǎn)化為球心到平面的距離,即可用勾股定理求解.【詳解】解:設(shè)點(diǎn)到平面的距離為,因?yàn)槭侵悬c(diǎn),所以到平面的距離為,三棱錐的體積,解得,作平面,垂足為的外心,所以,且,所以在中,,此為球的半徑,.故選:A.【點(diǎn)睛】本題考查球的表面積,考查點(diǎn)到平面的距離,屬于中檔題.3.B【解析】試題分析:由題意得,,所以,,所求雙曲線方程為.考點(diǎn):雙曲線方程.4.B【解析】
根據(jù)題意,有兩種分配方案,一是,二是,然后各自全排列,再求和.【詳解】當(dāng)按照進(jìn)行分配時(shí),則有種不同的方案;當(dāng)按照進(jìn)行分配,則有種不同的方案.故共有36種不同的派遣方案,故選:B.【點(diǎn)睛】本題考查排列組合、數(shù)學(xué)文化,還考查數(shù)學(xué)建模能力以及分類討論思想,屬于中檔題.5.D【解析】
利用復(fù)數(shù)的除法運(yùn)算,化簡復(fù)數(shù),即可求解,得到答案.【詳解】由題意,復(fù)數(shù),故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的除法運(yùn)算,其中解答中熟記復(fù)數(shù)的除法運(yùn)算法則是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6.B【解析】
設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.7.C【解析】
由題可知,曲線與有公共點(diǎn),即方程有解,可得有解,令,則,對(duì)分類討論,得出時(shí),取得極大值,也即為最大值,進(jìn)而得出結(jié)論.【詳解】解:由題可知,曲線與有公共點(diǎn),即方程有解,即有解,令,則,則當(dāng)時(shí),;當(dāng)時(shí),,故時(shí),取得極大值,也即為最大值,當(dāng)趨近于時(shí),趨近于,所以滿足條件.故選:C.【點(diǎn)睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)性質(zhì)的基本方法,考查化歸與轉(zhuǎn)化等數(shù)學(xué)思想,考查抽象概括、運(yùn)算求解等數(shù)學(xué)能力,屬于難題.8.A【解析】
首先判斷函數(shù)的奇偶性,再根據(jù)特殊值即可利用排除法解得;【詳解】解:依題意,,故函數(shù)為偶函數(shù),圖象關(guān)于軸對(duì)稱,排除C;而,排除B;,排除D.故選:.【點(diǎn)睛】本題考查函數(shù)圖象的識(shí)別,函數(shù)的奇偶性的應(yīng)用,屬于基礎(chǔ)題.9.A【解析】
根據(jù)函數(shù)奇偶性的定義即可判斷函數(shù)的奇偶性并證明.【詳解】當(dāng)是偶函數(shù),則,所以,所以是偶函數(shù);當(dāng)是奇函數(shù)時(shí),則,所以,所以是偶函數(shù);當(dāng)為非奇非偶函數(shù)時(shí),例如:,則,,此時(shí),故⑥錯(cuò)誤;故③④正確.故選:A【點(diǎn)睛】本題考查了函數(shù)的奇偶性定義,掌握奇偶性定義是解題的關(guān)鍵,屬于基礎(chǔ)題.10.D【解析】
確定點(diǎn)為外心,代入化簡得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)椋?,即.故選:【點(diǎn)睛】本題考查了向量模長的計(jì)算,意在考查學(xué)生的計(jì)算能力.11.A【解析】
根據(jù)函數(shù)的奇偶性和單調(diào)性,排除錯(cuò)誤選項(xiàng),從而得出正確選項(xiàng).【詳解】因?yàn)?,所以是偶函?shù),排除C和D.當(dāng)時(shí),,,令,得,即在上遞減;令,得,即在上遞增.所以在處取得極小值,排除B.故選:A【點(diǎn)睛】本小題主要考查函數(shù)圖像的識(shí)別,考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值,屬于中檔題.12.D【解析】
判斷,利用函數(shù)的奇偶性代入計(jì)算得到答案.【詳解】∵,∴.故選:【點(diǎn)睛】本題考查了利用函數(shù)的奇偶性求值,意在考查學(xué)生對(duì)于函數(shù)性質(zhì)的靈活運(yùn)用.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果?!驹斀狻坑?,令,得,解得?!军c(diǎn)睛】本題主要考查行列式定義的應(yīng)用。14.01【解析】
根據(jù)分段函數(shù)解析式,代入即可求解.【詳解】函數(shù),所以,.故答案為:0;1.【點(diǎn)睛】本題考查了分段函數(shù)求值的簡單應(yīng)用,屬于基礎(chǔ)題.15.4038.【解析】
由函數(shù)圖象的對(duì)稱性得:函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱,則,,即,得解.【詳解】由知:得函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱又函數(shù)的圖象關(guān)于點(diǎn)對(duì)稱則函數(shù)圖象與函數(shù)圖象的交點(diǎn)關(guān)于點(diǎn)對(duì)稱則故,即本題正確結(jié)果:【點(diǎn)睛】本題考查利用函數(shù)圖象的對(duì)稱性來求值的問題,關(guān)鍵是能夠根據(jù)函數(shù)解析式判斷出函數(shù)的對(duì)稱中心,屬中檔題.16.【解析】
由角平分線成比例定理推理可得,進(jìn)而設(shè)點(diǎn)表示向量構(gòu)建方程組表示點(diǎn)P坐標(biāo),代入圓C方程即可表示動(dòng)點(diǎn)Q的軌跡方程,再由將所求視為該圓上的點(diǎn)與原點(diǎn)間的距離,所以其最值為圓心到原點(diǎn)的距離加減半徑.【詳解】由題可構(gòu)建如圖所示的圖形,因?yàn)锳Q是的角平分線,由角平分線成比例定理可知,所以.設(shè)點(diǎn),點(diǎn),即,則,所以.又因?yàn)辄c(diǎn)是圓上的動(dòng)點(diǎn),則,故點(diǎn)Q的運(yùn)功軌跡是以為圓心為半徑的圓,又即為該圓上的點(diǎn)與原點(diǎn)間的距離,因?yàn)?,所以故答案為:【點(diǎn)睛】本題考查與圓有關(guān)的距離的最值問題,常常轉(zhuǎn)化到圓心的距離加減半徑,還考查了求動(dòng)點(diǎn)的軌跡方程,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1),最大值公頃;(2)17、25、5、5.【解析】
(1)由余弦定理求出三角形ABC的邊長BC,進(jìn)而可以求出,,由面積公式求出,,即可求出,并求出最值;(2)由(1)知,,,即可求出、,再算出,代入(1)中表達(dá)式求出,?!驹斀狻浚?)由余弦定理得,,所以,,同理可得又,所以,故在區(qū)間上的最大值為,近似值為。(2)由(1)知,,,所以,進(jìn)而,由知,,,故、、、的值分別是17、25、5、5?!军c(diǎn)睛】本題主要考查利用余弦定理解三角形以及同角三角函數(shù)平方關(guān)系的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)建模以及數(shù)學(xué)運(yùn)算能力。18.(1);(2).【解析】
(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)?,所以,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式和前項(xiàng)和的基本量的求解,涉及利用累加法求通項(xiàng)公式,屬綜合基礎(chǔ)題.19.(1)見解析(2)(文)(理)【解析】
(1)證明:取PD中點(diǎn)G,連結(jié)GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),∴EF∥面PAD;(2)(文)解:取AD中點(diǎn)O,連結(jié)PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點(diǎn),∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點(diǎn)晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個(gè)定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就是利用方法①證明的.20.(1)(2)【解析】
分析:(1)利用正弦定理以及誘導(dǎo)公式與和角公式,結(jié)合特殊角的三角函數(shù)值,求得角C;(2)運(yùn)用向量的平方就是向量模的平方,以及向量數(shù)量積的定義,結(jié)合基本不等式,求得的最大值,再由三角形的面積公式計(jì)算即可得到所求的值.詳解:(1)∵,,(Ⅱ)取中點(diǎn),則,在中,,(注:也可將兩邊平方)即,,所以,當(dāng)且僅當(dāng)時(shí)取等號(hào).此時(shí),其最大值為.點(diǎn)睛:該題考查的是有關(guān)三角形的問題,涉及到的知識(shí)點(diǎn)有正弦定理,誘導(dǎo)公式,和角公式,向量的平方即為向量模的平方,基本不等式,三角形的面積公式,在解題的過程中,需要正確使用相關(guān)的公式進(jìn)行運(yùn)算即可求得結(jié)果.21.(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計(jì)算出的觀測(cè)值,即可進(jìn)行判斷;(2)先計(jì)算出時(shí)間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計(jì)算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因?yàn)闃颖緮?shù)據(jù)中有流動(dòng)人員210人,非流動(dòng)人員90人,所以辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員列聯(lián)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年產(chǎn)00萬噸鋼鐵生產(chǎn)線建設(shè)合同
- 2024正式版車輛轉(zhuǎn)讓合同標(biāo)準(zhǔn)范本
- 土建承包合同范本2024年
- 2024幼兒園合作合同范文
- 上海買房合同書
- 2024個(gè)人店鋪出租合同范本
- 2024華碩電腦經(jīng)銷商訂貨單合同大客戶
- 商鋪合作經(jīng)營協(xié)議
- 2024臨時(shí)工合同協(xié)議書版臨時(shí)工合同范本
- 2024新媒體主播合同
- 俱樂部陪玩方案
- 軟件開發(fā)項(xiàng)目驗(yàn)收方案
- 崗位整合整治與人員優(yōu)化配置實(shí)施細(xì)則
- 康復(fù)治療技術(shù)的職業(yè)規(guī)劃課件
- 蜜雪冰城營銷案例分析總結(jié)
- 交換機(jī)CPU使用率過高的原因分析及探討
- 易制毒化學(xué)品安全管理崗位責(zé)任分工制度
- 住宿服務(wù)免責(zé)聲明
- 2023年醫(yī)療機(jī)構(gòu)消毒技術(shù)規(guī)范醫(yī)療機(jī)構(gòu)消毒技術(shù)規(guī)范
- MOOC 家庭與社區(qū)教育-南京師范大學(xué) 中國大學(xué)慕課答案
- 構(gòu)造法與數(shù)列課件高三數(shù)學(xué)二輪復(fù)習(xí)
評(píng)論
0/150
提交評(píng)論