2023-2024學(xué)年黑龍江省哈爾濱市依蘭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年黑龍江省哈爾濱市依蘭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年黑龍江省哈爾濱市依蘭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年黑龍江省哈爾濱市依蘭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年黑龍江省哈爾濱市依蘭縣市級名校中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年黑龍江省哈爾濱市依蘭縣市級名校中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,A、B、C是⊙O上的三點,∠BAC=30°,則∠BOC的大小是()A.30° B.60° C.90° D.45°2.如果關(guān)于x的方程沒有實數(shù)根,那么c在2、1、0、中取值是()A.; B.; C.; D..3.按如圖所示的方法折紙,下面結(jié)論正確的個數(shù)()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1個 B.2個 C.1個 D.4個4.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.95.tan45°的值等于()A. B. C. D.16.地球平均半徑約等于6400000米,6400000用科學(xué)記數(shù)法表示為()A.64×105 B.6.4×105 C.6.4×106 D.6.4×1077.將拋物線y=-2xA.y=-2(x+1)2C.y=-2(x-1)28.如圖,在△ABC中,∠AED=∠B,DE=6,AB=10,AE=8,則BC的長度為()A. B. C.3 D.9.等式組的解集在下列數(shù)軸上表示正確的是(

).A.

B.C.

D.10.若關(guān)于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.11.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.412.如圖,CE,BF分別是△ABC的高線,連接EF,EF=6,BC=10,D、G分別是EF、BC的中點,則DG的長為()A.6 B.5 C.4 D.3二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,若∠BOD=88°,則∠BCD的度數(shù)是_________.14.小球在如圖所示的地板上自由地滾動,并隨機地停留在某塊方磚上,那么小球最終停留在黑色區(qū)域的概率是_____________________.15.若,,則代數(shù)式的值為__________.16.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.17.如圖,在△ABC中,AB≠AC.D,E分別為邊AB,AC上的點.AC=3AD,AB=3AE,點F為BC邊上一點,添加一個條件:______,可以使得△FDB與△ADE相似.(只需寫出一個)

18.化簡:=__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數(shù).(2)求圖中陰影部分的面積.20.(6分)如圖1,將長為10的線段OA繞點O旋轉(zhuǎn)90°得到OB,點A的運動軌跡為,P是半徑OB上一動點,Q是上的一動點,連接PQ.(1)當(dāng)∠POQ=時,PQ有最大值,最大值為;(2)如圖2,若P是OB中點,且QP⊥OB于點P,求的長;(3)如圖3,將扇形AOB沿折痕AP折疊,使點B的對應(yīng)點B′恰好落在OA的延長線上,求陰影部分面積.21.(6分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內(nèi),∠CAE+∠CBE=1.(1)如圖①,當(dāng)四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當(dāng)四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當(dāng)四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設(shè)BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關(guān)系.(直接寫出結(jié)果,不必寫出解答過程)22.(8分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當(dāng)點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.23.(8分)列方程解應(yīng)用題:為宣傳社會主義核心價值觀,某社區(qū)居委會計劃制作1200個大小相同的宣傳欄.現(xiàn)有甲、乙兩個廣告公司都具備制作能力,居委會派出相關(guān)人員分別到這兩個廣告公司了解情況,獲得如下信息:信息一:甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天;信息二:乙公司每天制作的數(shù)量是甲公司每天制作數(shù)量的1.2倍.根據(jù)以上信息,求甲、乙兩個廣告公司每天分別能制作多少個宣傳欄?24.(10分)先化簡,再求值:﹣÷,其中a=1.25.(10分)已知:如圖,在半徑為2的扇形中,°,點C在半徑OB上,AC的垂直平分線交OA于點D,交弧AB于點E,聯(lián)結(jié).(1)若C是半徑OB中點,求的正弦值;(2)若E是弧AB的中點,求證:;(3)聯(lián)結(jié)CE,當(dāng)△DCE是以CD為腰的等腰三角形時,求CD的長.26.(12分)如圖,AB是⊙O的直徑,點C是AB延長線上的點,CD與⊙O相切于點D,連結(jié)BD、AD.(1)求證;∠BDC=∠A.(2)若∠C=45°,⊙O的半徑為1,直接寫出AC的長.27.(12分)有這樣一個問題:探究函數(shù)y=﹣2x的圖象與性質(zhì).小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y=﹣2x的圖象與性質(zhì)進(jìn)行了探究.下面是小東的探究過程,請補充完整:(1)函數(shù)y=﹣2x的自變量x的取值范圍是_______;(2)如表是y與x的幾組對應(yīng)值x…﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣0﹣﹣m…則m的值為_______;(3)如圖,在平面直角坐標(biāo)系中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點.根據(jù)描出的點,畫出該函數(shù)的圖象;(4)觀察圖象,寫出該函數(shù)的兩條性質(zhì)________.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】【分析】欲求∠BOC,又已知一圓周角∠BAC,可利用圓周角與圓心角的關(guān)系求解.【詳解】∵∠BAC=30°,∴∠BOC=2∠BAC=60°(同弧所對的圓周角是圓心角的一半),故選B.【點睛】本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.2、A【解析】分析:由方程根的情況,根據(jù)根的判別式可求得c的取值范圍,則可求得答案.詳解:∵關(guān)于x的方程x1+1x+c=0沒有實數(shù)根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故選A.點睛:本題主要考查了根的判別式,熟練掌握一元二次方程根的個數(shù)與根的判別式的關(guān)系是解題的關(guān)鍵.3、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正確;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正確;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正確;故選C.4、B【解析】

作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據(jù)角平分線的性質(zhì)得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設(shè)AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.5、D【解析】

根據(jù)特殊角三角函數(shù)值,可得答案.【詳解】解:tan45°=1,故選D.【點睛】本題考查了特殊角三角函數(shù)值,熟記特殊角三角函數(shù)值是解題關(guān)鍵.6、C【解析】

由科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:6400000=6.4×106,故選C.點睛:此題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.7、C【解析】試題分析:∵拋物線y=-2x2+1向右平移1個單位長度,∴平移后解析式為:y=-2考點:二次函數(shù)圖象與幾何變換.8、A【解析】∵∠AED=∠B,∠A=∠A

∴△ADE∽△ACB∴,∵DE=6,AB=10,AE=8,∴,解得BC=.故選A.9、B【解析】【分析】分別求出每一個不等式的解集,然后在數(shù)軸上表示出每個不等式的解集,對比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.10、C【解析】

根據(jù)一元二次方程的定義結(jié)合根的判別式即可得出關(guān)于a的一元一次不等式組,解之即可得出結(jié)論.【詳解】解:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據(jù)一元二次方程的定義結(jié)合根的判別式列出關(guān)于a的一元一次不等式組是解題的關(guān)鍵.11、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【點睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計算法則即可解答.12、C【解析】

連接EG、FG,根據(jù)斜邊中線長為斜邊一半的性質(zhì)即可求得EG=FG=BC,因為D是EF中點,根據(jù)等腰三角形三線合一的性質(zhì)可得GD⊥EF,再根據(jù)勾股定理即可得出答案.【詳解】解:連接EG、FG,EG、FG分別為直角△BCE、直角△BCF的斜邊中線,∵直角三角形斜邊中線長等于斜邊長的一半∴EG=FG=BC=×10=5,∵D為EF中點∴GD⊥EF,即∠EDG=90°,又∵D是EF的中點,∴,在中,,故選C.【點睛】本題考查了直角三角形中斜邊上中線等于斜邊的一半的性質(zhì)、勾股定理以及等腰三角形三線合一的性質(zhì),本題中根據(jù)等腰三角形三線合一的性質(zhì)求得GD⊥EF是解題的關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、136°.【解析】

由圓周角定理得,∠A=∠BOD=44°,由圓內(nèi)接四邊形的性質(zhì)得,∠BCD=180°-∠A=136°【點睛】本題考查了1.圓周角定理;2.圓內(nèi)接四邊形的性質(zhì).14、2【解析】試題分析:根據(jù)題意和圖示,可知所有的等可能性為18種,然后可知落在黑色區(qū)域的可能有4種,因此可求得小球停留在黑色區(qū)域的概率為:41815、-12【解析】分析:對所求代數(shù)式進(jìn)行因式分解,把,,代入即可求解.詳解:,,,故答案為:點睛:考查代數(shù)式的求值,掌握提取公因式法和公式法進(jìn)行因式分解是解題的關(guān)鍵.16、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:17、或【解析】因為,,,所以,欲使與相似,只需要與相似即可,則可以添加的條件有:∠A=∠BDF,或者∠C=∠BDF,等等,答案不唯一.【方法點睛】在解決本題目,直接處理與,無從下手,沒有公共邊或者公共角,稍作轉(zhuǎn)化,通過,與相似.這時,柳暗花明,迎刃而解.18、a+b【解析】

將原式通分相減,然后用平方差公式分解因式,再約分化簡即可。【詳解】解:原式====a+b【點睛】此題主要考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)∠A=30°;(2)【解析】

(1)連接OC,由過點C的切線交AB的延長線于點D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.(2)先求∠COD度數(shù)及OC長度,即可求出圖中陰影部分的面積.【詳解】解:(1)連結(jié)OC∵CD為⊙O的切線∴OC⊥CD∴∠OCD=90°又∵OA=OC∴∠A=∠ACO又∵∠A=∠D∴∠A=∠ACO=∠D而∠A+∠ACD+∠D=180°﹣90°=90°∴∠A=30°(2)由(1)知:∠D=∠A=30°∴∠COD=60°又∵CD=2∴OC=2∴S陰影=.【點睛】本題考查的知識點是扇形面積的計算及切線的性質(zhì),解題的關(guān)鍵是熟練的掌握扇形面積的計算及切線的性質(zhì).20、(1);(2);(3)【解析】

(1)先判斷出當(dāng)PQ取最大時,點Q與點A重合,點P與點B重合,即可得出結(jié)論;(2)先判斷出∠POQ=60°,最后用弧長用弧長公式即可得出結(jié)論;(3)先在Rt△B'OP中,OP2+=,解得OP=,最后用面積的和差即可得出結(jié)論.【詳解】解:(1)∵P是半徑OB上一動點,Q是上的一動點,∴當(dāng)PQ取最大時,點Q與點A重合,點P與點B重合,此時,∠POQ=90°,PQ=,故答案為:90°,10;(2)解:如圖,連接OQ,∵點P是OB的中點,∴OP=OB=OQ.∵QP⊥OB,∴∠OPQ=90°在Rt△OPQ中,cos∠QOP=,∴∠QOP=60°,∴l(xiāng)BQ;(3)由折疊的性質(zhì)可得,,在Rt△B'OP中,OP2+=,解得OP=,S陰影=S扇形AOB﹣2S△AOP=.【點睛】此題是圓的綜合題,主要考查了圓的性質(zhì),弧長公式,扇形的面積公式,熟記公式是解本題的關(guān)鍵.21、(1)i)證明見試題解析;ii);(2);(3).【解析】

(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進(jìn)一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【點睛】本題考查相似三角形的判定與性質(zhì);正方形的性質(zhì);矩形的性質(zhì);菱形的性質(zhì).22、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時,設(shè)正方形的邊長為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設(shè)AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當(dāng)AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當(dāng)AE=AC時,設(shè)正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點為Q,連接CQ并延長交圓弧于點P,此時CP的長度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運用性質(zhì)進(jìn)行推擠是解此題的關(guān)鍵,用了分類討論思想,難度偏大.23、甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【解析】

設(shè)甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄,然后根據(jù)“甲公司單獨制作完成這批宣傳欄比乙公司單獨制作完成這批宣傳欄多用10天”列出方程求解即可.【詳解】解:設(shè)甲廣告公司每天能制作x個宣傳欄,則乙廣告公司每天能制作1.2x個宣傳欄.根據(jù)題意得:1200x解得:x=1.經(jīng)檢驗:x=1是原方程的解且符合實際問題的意義.∴1.2x=1.2×1=2.答:甲廣告公司每天能制作1個宣傳欄,乙廣告公司每天能制作2個宣傳欄.【點睛】此題考查了分式方程的應(yīng)用,找出等量關(guān)系為兩廣告公司的工作時間的差為10天是解題的關(guān)鍵.24、-1【解析】

原式第二項利用除法法則變形,約分后通分,并利用同分母分式的減法法則計算,約分得到最簡結(jié)果,把a的值代入計算即可求出值.【詳解】解:原式=﹣?2(a﹣3)=﹣==,當(dāng)a=1時,原式==﹣1.【點睛】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.25、(2);(2)詳見解析;(2)當(dāng)是以CD為腰的等腰三角形時,CD的長為2或.【解析】

(2)先求出OCOB=2,設(shè)OD=x,得出CD=AD=OA﹣OD=2﹣x,根據(jù)勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出結(jié)論;(2)先判斷出,進(jìn)而得出∠CBE=∠BCE,再判斷出△OBE∽△EBC,即可得出結(jié)論;(3)分兩種情況:①當(dāng)CD=CE時,判斷出四邊形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;②當(dāng)CD=DE時,判斷出∠DAE=∠DEA,再判斷出∠OAE=OEA,進(jìn)而得出∠DEA=∠OEA,即:點D和點O重合,即可得出結(jié)論.【詳解】(2)∵C是半徑OB中點,∴OCOB=2.∵DE是AC的垂直平分線,∴AD=CD.設(shè)OD=x,∴CD=AD=OA﹣OD=2﹣x.在Rt△OCD中,根據(jù)勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;(2)如圖2,連接AE,CE.∵DE是AC垂直平分線,∴AE=CE.∵E是弧AB的中點,∴,∴AE=BE,∴BE=CE,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論