版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第02講平面向量基本定理及坐標(biāo)表示(精講)目錄第一部分:知識點(diǎn)精準(zhǔn)記憶第二部分:課前自我評估測試第三部分:典型例題剖析高頻考點(diǎn)一:平面向量基本定理的應(yīng)用高頻考點(diǎn)二:平面向量的坐標(biāo)表示高頻考點(diǎn)三:平面向量共線的坐標(biāo)表示角度1:由坐標(biāo)判斷是否共線角度2:由向量平行求參數(shù)角度3:由坐標(biāo)解決三點(diǎn)共線問題第四部分:高考真題感悟第一部分:知識點(diǎn)精準(zhǔn)記憶第一部分:知識點(diǎn)精準(zhǔn)記憶1、平面向量的基本定理1.1定理:如果SKIPIF1<0是同一平面內(nèi)的兩個(gè)不共線向量,那么對于這個(gè)平面內(nèi)任意向量SKIPIF1<0,有且只有一對實(shí)數(shù)SKIPIF1<0,使SKIPIF1<0.1.2基底:不共線的向量SKIPIF1<0叫做表示這一平面內(nèi)所有向量的一組基底.(1)不共線的兩個(gè)向量可作為一組基底,即SKIPIF1<0不能作為基底;(2)基底一旦確定,分解方式唯一;(3)SKIPIF1<0用基底SKIPIF1<0兩種表示,即SKIPIF1<0,則SKIPIF1<0,進(jìn)而求參數(shù).2、平面向量的正交分解不共線的兩個(gè)向量相互垂直是一種重要的情形,把一個(gè)向量分解為兩個(gè)互相垂直的向量,叫做把向量作正交分解.3、平面向量的坐標(biāo)運(yùn)算3.1平面向量的坐標(biāo)表示在直角坐標(biāo)系中,分別取與SKIPIF1<0軸,SKIPIF1<0軸方向相同的兩個(gè)不共線的單位向量SKIPIF1<0作為基底,存在唯一一組有序?qū)崝?shù)對SKIPIF1<0使SKIPIF1<0,則有序數(shù)對SKIPIF1<0,叫做SKIPIF1<0的坐標(biāo),記作SKIPIF1<0.3.2平面向量的坐標(biāo)運(yùn)算(1)向量加減:若SKIPIF1<0,則SKIPIF1<0;(2)數(shù)乘向量:若SKIPIF1<0,則SKIPIF1<0;(3)向量數(shù)量積:若SKIPIF1<0,則SKIPIF1<0;(4)任一向量:設(shè)SKIPIF1<0,則SKIPIF1<0.4、平面向量共線的坐標(biāo)表示若SKIPIF1<0,則SKIPIF1<0的充要條件為SKIPIF1<0第二部分:課前自我評估測試第二部分:課前自我評估測試1.(2022·河北保定·高一階段練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:A2.(2022·吉林毓文中學(xué)高一期中)向量SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0.故選:A.3.(2022·遼寧實(shí)驗(yàn)中學(xué)高一期中)SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.6 D.8【答案】D【詳解】SKIPIF1<0,SKIPIF1<0.故選:D.4.(2022·黑龍江·哈爾濱三中高一期中)已知向量SKIPIF1<0、SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.3 B.4 C.5 D.6【答案】C【詳解】依題意,SKIPIF1<0;故選:C.5.(2022·山西運(yùn)城·高一期中)與向量SKIPIF1<0方向相同的單位向量為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】與SKIPIF1<0同向的單位向量為SKIPIF1<0,∵SKIPIF1<0,故SKIPIF1<0=SKIPIF1<0.故選:D.第三部分:典型例題剖析第三部分:典型例題剖析高頻考點(diǎn)一:平面向量基本定理的應(yīng)用例題1.(2022·安徽省臨泉第一中學(xué)高二階段練習(xí))如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】解:由題意得:SKIPIF1<0,故選:D.例題2.(2022·山西呂梁·二模(文))在△SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0上一點(diǎn).若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】如圖所示,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選:SKIPIF1<0.例題3.(2022·江蘇徐州·高一期中)如圖所示,在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0中點(diǎn),設(shè)SKIPIF1<0,則SKIPIF1<0________(請用SKIPIF1<0表示SKIPIF1<0).【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0是SKIPIF1<0中點(diǎn)所以SKIPIF1<0又因?yàn)镾KIPIF1<0所以SKIPIF1<0即SKIPIF1<0故答案為:SKIPIF1<0例題4.(2022·全國·高一專題練習(xí))如圖,平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中點(diǎn),以SKIPIF1<0為基底表示向量SKIPIF1<0=________.【答案】SKIPIF1<0【詳解】SKIPIF1<0故答案為:SKIPIF1<0例題5.(2022·江蘇·高一專題練習(xí))下列結(jié)論:①若向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面,則存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0;②若向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不共面,則不存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0;③若向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面,SKIPIF1<0,SKIPIF1<0不共線,則存在實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,使SKIPIF1<0;④若SKIPIF1<0,則向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0共面.其中,正確的個(gè)數(shù)是______.【答案】3【詳解】對于①,若SKIPIF1<0,SKIPIF1<0共線,且SKIPIF1<0,SKIPIF1<0不共線,則不存在實(shí)數(shù)x,y,使SKIPIF1<0,故①錯(cuò)誤;由共面向量定理可知②、③、④均正確,故正確的個(gè)數(shù)是3.故答案為:3題型歸類練1.(2022·全國·高一課時(shí)練習(xí))已知正方形SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的中點(diǎn),SKIPIF1<0,則SKIPIF1<0________【答案】SKIPIF1<0解:令SKIPIF1<0則SKIPIF1<0,有∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<02.(2022·重慶巴蜀中學(xué)高一期中)已知SKIPIF1<0中,點(diǎn)D滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0___________.【答案】SKIPIF1<0【詳解】解:SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.3.(2022·山西·運(yùn)城市景勝中學(xué)高一階段練習(xí))如圖,在平行四邊形SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0邊的中點(diǎn),且SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0(用SKIPIF1<0表示).【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0.4.(2022·全國·高一單元測試)如圖,矩形SKIPIF1<0與矩形SKIPIF1<0全等,且SKIPIF1<0.(1)用向量SKIPIF1<0與SKIPIF1<0表示SKIPIF1<0;(2)用向量SKIPIF1<0與SKIPIF1<0表示SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【解析】(1)SKIPIF1<0.(2)以A為坐標(biāo)原點(diǎn),AE所在直線為x軸,AB所在直線為y軸建立如圖所示的平面直角坐標(biāo)系SKIPIF1<0,設(shè)SKIPIF1<0,因?yàn)榫匦蜸KIPIF1<0與矩形SKIPIF1<0全等,且SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.高頻考點(diǎn)二:平面向量的坐標(biāo)表示例題1.(2022·四川省內(nèi)江市第六中學(xué)高一期中(理))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.-2 D.2【答案】A【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故選:A例題2.(2022·黑龍江·哈師大附中高一期中)已知SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0點(diǎn)的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0點(diǎn)的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】∵SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0方向相反可設(shè)SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0即SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0故選:D.例題3.(2022·四川·什邡中學(xué)高一階段練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0的值為______.【答案】SKIPIF1<0解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;故答案為:SKIPIF1<0例題4.(2022·上海市復(fù)旦中學(xué)高一期中)已知SKIPIF1<0,若SKIPIF1<0、SKIPIF1<0,則點(diǎn)SKIPIF1<0坐標(biāo)為______________.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0故答案為:SKIPIF1<0例題5.(2022·河北武強(qiáng)中學(xué)高一期中)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0點(diǎn)的坐標(biāo);(2)設(shè)向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0平行,求實(shí)數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)設(shè)SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.(2)由題意得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0平行,所以SKIPIF1<0,解得SKIPIF1<0.所以實(shí)數(shù)SKIPIF1<0的值為SKIPIF1<0.題型歸類練1.(2022·河南·南陽中學(xué)高一階段練習(xí))已知點(diǎn)SKIPIF1<0,則滿足SKIPIF1<0的SKIPIF1<0的坐標(biāo)為______.【答案】SKIPIF1<0.【詳解】設(shè)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0,可得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0的坐標(biāo)為SKIPIF1<0.故答案為:SKIPIF1<0.2.(2022·廣東·仲元中學(xué)高一期中)已知SKIPIF1<0、SKIPIF1<0,點(diǎn)P是線段SKIPIF1<0上的點(diǎn),且SKIPIF1<0,則P點(diǎn)的坐標(biāo)為________.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,因?yàn)镾KIPIF1<0、SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,即P點(diǎn)的坐標(biāo)為SKIPIF1<0,故答案為:SKIPIF1<03.(2022·河南·臨潁縣第一高級中學(xué)高一階段練習(xí))已知平行四邊形ABCD的三個(gè)頂點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求點(diǎn)D的坐標(biāo);(2)求平行四邊形ABCD的面積.【答案】(1)SKIPIF1<0(2)10(1)設(shè)點(diǎn)D的坐標(biāo)為SKIPIF1<0.由題意得SKIPIF1<0,SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0得SKIPIF1<0所以點(diǎn)D的坐標(biāo)為SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以平行四邊形ABCD為矩形.因?yàn)镾KIPIF1<0,SKIPIF1<0,所以平行四邊形ABCD的面積為SKIPIF1<0.4.(2022·山東濰坊·高一期中)如圖所示,已知矩形ABCD中,SKIPIF1<0,AC與MN相交于點(diǎn)E.(1)若SKIPIF1<0,求SKIPIF1<0和SKIPIF1<0的值;(2)用向量SKIPIF1<0表示SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0(2)SKIPIF1<0(1)以A點(diǎn)為原點(diǎn),AB所在直線為x軸,AD所在直線為y軸,建立平面直角坐標(biāo)系,則SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0(2)設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0所以SKIPIF1<0.解得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镸,E,N三點(diǎn)共線,所以SKIPIF1<0,所以SKIPIF1<0﹒5.(2022·湖北省通山縣第一中學(xué)高一階段練習(xí))如圖,在四邊形ABCD中,SKIPIF1<0,SKIPIF1<0,E是線段CD上的點(diǎn),直線BD與直線AE相交于點(diǎn)P,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,E是線段CD的中點(diǎn),求與SKIPIF1<0同向的單位向量的坐標(biāo);(2)若SKIPIF1<0,用SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0,并求出實(shí)數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0,SKIPIF1<0(1)SKIPIF1<0,易得SKIPIF1<0,又因?yàn)镋是CD的中點(diǎn),所以SKIPIF1<0,故SKIPIF1<0,則與SKIPIF1<0同向共線單位向量SKIPIF1<0,坐標(biāo)為SKIPIF1<0(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,所以SKIPIF1<0又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)辄c(diǎn)B,P,D共線SKIPIF1<0,故SKIPIF1<0高頻考點(diǎn)三:平面向量共線的坐標(biāo)表示角度1:由坐標(biāo)判斷是否共線1.(多選)(2022·山東泰安·高一期中)在下列向量組中,可以作為基底的是(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】BC【詳解】對A,因?yàn)镾KIPIF1<0,所以SKIPIF1<0共線,不能作為基底,故A錯(cuò)誤;對B,因?yàn)镾KIPIF1<0,所以SKIPIF1<0不共線,可以作為基底,故B正確;對C,因?yàn)镾KIPIF1<0,所以SKIPIF1<0不共線,可以作為基底,故C正確;對D,因?yàn)镾KIPIF1<0,所以SKIPIF1<0共線,不能作為基底,故D錯(cuò)誤.故選:BC.2.(2022·重慶八中高一期中)已知向量SKIPIF1<0,則與SKIPIF1<0平行的單位向量的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0或SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】B【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以與SKIPIF1<0平行的單位向量為SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.故選:B.3.(2022·湖南·高一課時(shí)練習(xí))已知點(diǎn)SKIPIF1<0,求證:SKIPIF1<0.【答案】見解析【詳解】SKIPIF1<0.SKIPIF1<0.又SKIPIF1<0,又A,B,C,D不共線,SKIPIF1<0.角度2:由向量平行求參數(shù)例題1.(2022·吉林·長春市第二實(shí)驗(yàn)中學(xué)高一期中)已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0方向相反,則SKIPIF1<0的值為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0平行,則SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0方向相反,所以SKIPIF1<0.故選:C.例題2.(2022·福建·廈門外國語學(xué)校高一期中)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0與SKIPIF1<0共線,則實(shí)數(shù)SKIPIF1<0(
)A.SKIPIF1<0 B.-2 C.SKIPIF1<0 D.2【答案】D【詳解】解:因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0,所以向量SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0共線,所以SKIPIF1<0,解得SKIPIF1<0,故選:D例題3.(2022·河北滄州·二模)已知向量SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0__________.【答案】SKIPIF1<0【詳解】由題意得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0例題4.(2022·全國·高三專題練習(xí)(文))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0________.【答案】SKIPIF1<0##SKIPIF1<0.【詳解】由題可得SKIPIF1<0SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0.例題5.(2022·河南宋基信陽實(shí)驗(yàn)中學(xué)高一階段練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0,SKIPIF1<0的值;(2)若SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.(1)因向量SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.(2)依題意,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,所以實(shí)數(shù)k的值是SKIPIF1<0.角度3:由坐標(biāo)解決三點(diǎn)共線問題例題1.(2022·廣東·汕頭市潮陽區(qū)河溪中學(xué)高一期中)已知平面直角坐標(biāo)系中,點(diǎn)SKIPIF1<0為原點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,求實(shí)數(shù)SKIPIF1<0的值.【答案】∵A,B,C三點(diǎn)共線,∴SKIPIF1<0,由SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,∴SKIPIF1<0例題2.(2022·全國·高二課時(shí)練習(xí))已知SKIPIF1<0三點(diǎn)共線,求實(shí)數(shù)SKIPIF1<0的值.【答案】SKIPIF1<0由題意,SKIPIF1<0三點(diǎn)共線故SKIPIF1<0即SKIPIF1<0解得:SKIPIF1<0例題3.(2022·全國·高一專題練習(xí))已知平面內(nèi)有兩兩不重合的三點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三點(diǎn)共線,求實(shí)數(shù)SKIPIF1<0的值.【答案】SKIPIF1<0【詳解】SKIPIF1<0,由于SKIPIF1<0三點(diǎn)共線,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0兩點(diǎn)重合,不符合題意.經(jīng)驗(yàn)證可知SKIPIF1<0符合題意.所以SKIPIF1<0.題型歸類練1.(2022·四川眉山·三模(理))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則k=___________.【答案】4【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0故答案為:4.2.(2022·湖北武漢·模擬預(yù)測)已知向量SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0______.【答案】SKIPIF1<0【詳解】根據(jù)題意可知SKIPIF1<0,SKIPIF1<0不共線若SKIPIF1<0,則SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0則可得SKIPIF1<0,解得SKIPIF1<0故答案為:SKIPIF1<0.3.(2022·安徽·碭山中學(xué)高一期中)向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0因?yàn)橄蛄縎KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故答案為:SKIPIF1<0.4.(2022·河北·滄縣中學(xué)高一期中)已知SKIPIF1<0是兩個(gè)不共線的非零向量,如果SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)證明:SKIPIF1<0三點(diǎn)共線.(2)若點(diǎn)SKIPIF1<0共線,求SKIPIF1<0的值.【答案】(1)證明見解析(2)SKIPIF1<0【解析】(1)SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0為公共點(diǎn),所以SKIPIF1<0三點(diǎn)共線.(2)(2)因?yàn)镾KIPIF1<0,SKIPIF1<0由于SKIPIF1<0三點(diǎn)共線,得SKIPIF1<0,所以SKIPIF1<0化簡得SKIPIF1<0,即SKIPIF1<0.5.(2022·廣東·東莞市東方明珠學(xué)校高一期中)已知SKIPIF1<0.(1)當(dāng)k為何值時(shí),SKIPIF1<0與SKIPIF1<0共線.(2)若SKIPIF1<0,且A,B,C三點(diǎn)共線,求m的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(1)由SKIPIF1<0,可得SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0共線,所以SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 窗體課程設(shè)計(jì)
- 廣西南寧市興寧區(qū)新興校2025屆中考聯(lián)考生物試卷含解析
- 2025屆重慶市忠縣中考生物考試模擬沖刺卷含解析
- 2025年度智能安防系統(tǒng)設(shè)計(jì)與施工合同范本4篇
- 二零二五版?zhèn)€人住房貸款利率調(diào)整合同模板3篇
- 二零二五版餐飲公司與食品供應(yīng)鏈合作協(xié)議書3篇
- 二零二五年電動機(jī)維修保養(yǎng)與定期檢修協(xié)議3篇
- 二零二五年度文化產(chǎn)業(yè)居間人與居間人合作項(xiàng)目協(xié)議2篇
- 物業(yè)工程監(jiān)理2025年度合同3篇
- 2025年度網(wǎng)絡(luò)安全臨時(shí)雇傭技術(shù)支持服務(wù)合同4篇
- 軍隊(duì)文職崗位述職報(bào)告
- 小學(xué)數(shù)學(xué)六年級解方程練習(xí)300題及答案
- 電抗器噪聲控制與減振技術(shù)
- 中醫(yī)健康宣教手冊
- 2024年江蘇揚(yáng)州市高郵市國有企業(yè)招聘筆試參考題庫附帶答案詳解
- 消費(fèi)醫(yī)療行業(yè)報(bào)告
- 品學(xué)課堂新范式
- GB/T 1196-2023重熔用鋁錠
- 運(yùn)輸行業(yè)員工崗前安全培訓(xùn)
- 公路工程安全風(fēng)險(xiǎn)辨識與防控手冊
- 幼兒園教師培訓(xùn):計(jì)數(shù)(數(shù)數(shù))的核心經(jīng)驗(yàn)
評論
0/150
提交評論