版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在中,角的對(duì)邊分別為,若,則的形狀為()A.直角三角形 B.等腰非等邊三角形C.等腰或直角三角形 D.鈍角三角形2.已知雙曲線的焦距是虛軸長(zhǎng)的2倍,則雙曲線的漸近線方程為()A. B. C. D.3.函數(shù)在上為增函數(shù),則的值可以是()A.0 B. C. D.4.已知某批零件的長(zhǎng)度誤差(單位:毫米)服從正態(tài)分布,從中隨機(jī)取一件,其長(zhǎng)度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機(jī)變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%5.如圖,在中,,且,則()A.1 B. C. D.6.若(),,則()A.0或2 B.0 C.1或2 D.17.若,,則的值為()A. B. C. D.8.如圖所示,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.9.在棱長(zhǎng)均相等的正三棱柱中,為的中點(diǎn),在上,且,則下述結(jié)論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.410.已知正四面體的棱長(zhǎng)為,是該正四面體外接球球心,且,,則()A. B.C. D.11.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.12.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點(diǎn)到準(zhǔn)線的距離為.14.已知等比數(shù)列的各項(xiàng)均為正數(shù),,則的值為________.15.已知數(shù)列滿足對(duì)任意,,則數(shù)列的通項(xiàng)公式__________.16.已知雙曲線-=1(a>0,b>0)與拋物線y2=8x有一個(gè)共同的焦點(diǎn)F,兩曲線的一個(gè)交點(diǎn)為P,若|FP|=5,則點(diǎn)F到雙曲線的漸近線的距離為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為:(其中為參數(shù)),直線的參數(shù)方程為(其中為參數(shù))(1)以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,求曲線的極坐標(biāo)方程;(2)若曲線與直線交于兩點(diǎn),點(diǎn)的坐標(biāo)為,求的值.18.(12分)已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大??;(2)若的面積為,求的周長(zhǎng)的最小值.19.(12分)如圖,在四棱錐中,,,,底面為正方形,、分別為、的中點(diǎn).(1)求證:平面;(2)求直線與平面所成角的正弦值.20.(12分)如圖,⊙的直徑的延長(zhǎng)線與弦的延長(zhǎng)線相交于點(diǎn),為⊙上一點(diǎn),,交于點(diǎn).求證:~.21.(12分)如圖,在中,已知,,,為線段的中點(diǎn),是由繞直線旋轉(zhuǎn)而成,記二面角的大小為.(1)當(dāng)平面平面時(shí),求的值;(2)當(dāng)時(shí),求二面角的余弦值.22.(10分)已知函數(shù)f(x)=x(1)討論fx(2)當(dāng)x≥-1時(shí),fx+a
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
利用正弦定理將邊化角,再由,化簡(jiǎn)可得,最后分類討論可得;【詳解】解:因?yàn)樗运运运运援?dāng)時(shí),為直角三角形;當(dāng)時(shí)即,為等腰三角形;的形狀是等腰三角形或直角三角形故選:.【點(diǎn)睛】本題考查三角形形狀的判斷,考查正弦定理的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.2.A【解析】
根據(jù)雙曲線的焦距是虛軸長(zhǎng)的2倍,可得出,結(jié)合,得出,即可求出雙曲線的漸近線方程.【詳解】解:由雙曲線可知,焦點(diǎn)在軸上,則雙曲線的漸近線方程為:,由于焦距是虛軸長(zhǎng)的2倍,可得:,∴,即:,,所以雙曲線的漸近線方程為:.故選:A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單幾何性質(zhì),以及雙曲線的漸近線方程.3.D【解析】
依次將選項(xiàng)中的代入,結(jié)合正弦、余弦函數(shù)的圖象即可得到答案.【詳解】當(dāng)時(shí),在上不單調(diào),故A不正確;當(dāng)時(shí),在上單調(diào)遞減,故B不正確;當(dāng)時(shí),在上不單調(diào),故C不正確;當(dāng)時(shí),在上單調(diào)遞增,故D正確.故選:D【點(diǎn)睛】本題考查正弦、余弦函數(shù)的單調(diào)性,涉及到誘導(dǎo)公式的應(yīng)用,是一道容易題.4.B【解析】試題分析:由題意故選B.考點(diǎn):正態(tài)分布5.C【解析】
由題可,所以將已知式子中的向量用表示,可得到的關(guān)系,再由三點(diǎn)共線,又得到一個(gè)關(guān)于的關(guān)系,從而可求得答案【詳解】由,則,即,所以,又共線,則.故選:C【點(diǎn)睛】此題考查的是平面向量基本定理的有關(guān)知識(shí),結(jié)合圖形尋找各向量間的關(guān)系,屬于中檔題.6.A【解析】
利用復(fù)數(shù)的模的運(yùn)算列方程,解方程求得的值.【詳解】由于(),,所以,解得或.故選:A【點(diǎn)睛】本小題主要考查復(fù)數(shù)模的運(yùn)算,屬于基礎(chǔ)題.7.A【解析】
取,得到,取,則,計(jì)算得到答案.【詳解】取,得到;取,則.故.故選:.【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,取和是解題的關(guān)鍵.8.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長(zhǎng)為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C【點(diǎn)睛】本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.9.B【解析】
設(shè)出棱長(zhǎng),通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點(diǎn)推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標(biāo)系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設(shè)棱長(zhǎng)為:2,對(duì)于①連結(jié),則,即與不垂直,又,①不正確;對(duì)于②,連結(jié),,在中,,而,是的中點(diǎn),所以,②正確;對(duì)于③由②可知,在中,,連結(jié),易知,而在中,,,即,又,面,平面平面,③正確;以為坐標(biāo)原點(diǎn),平面上過點(diǎn)垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標(biāo)系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【點(diǎn)睛】本題考查命題的真假的判斷,棱錐的結(jié)構(gòu)特征,直線與平面垂直,直線與直線的位置關(guān)系的應(yīng)用,考查空間想象能力以及邏輯推理能力.10.A【解析】
如圖設(shè)平面,球心在上,根據(jù)正四面體的性質(zhì)可得,根據(jù)平面向量的加法的幾何意義,重心的性質(zhì),結(jié)合已知求出的值.【詳解】如圖設(shè)平面,球心在上,由正四面體的性質(zhì)可得:三角形是正三角形,,,在直角三角形中,,,,,,因?yàn)闉橹匦?,因此,則,因此,因此,則,故選A.【點(diǎn)睛】本題考查了正四面體的性質(zhì),考查了平面向量加法的幾何意義,考查了重心的性質(zhì),屬于中檔題.11.D【解析】
利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.12.D【解析】
由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【點(diǎn)睛】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】試題分析:由題意得,因?yàn)閽佄锞€,即,即焦點(diǎn)到準(zhǔn)線的距離為.考點(diǎn):拋物線的性質(zhì).14.【解析】
運(yùn)用等比數(shù)列的通項(xiàng)公式,即可解得.【詳解】解:,,,,,,,,,,,.故答案為:.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式及應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】
利用累加法求得數(shù)列的通項(xiàng)公式,由此求得的通項(xiàng)公式.【詳解】由題,所以故答案為:【點(diǎn)睛】本小題主要考查累加法求數(shù)列的通項(xiàng)公式,屬于基礎(chǔ)題.16.【解析】
設(shè)點(diǎn)為,由拋物線定義知,,求出點(diǎn)P坐標(biāo)代入雙曲線方程得到的關(guān)系式,求出雙曲線的漸近線方程,利用點(diǎn)到直線的距離公式求解即可.【詳解】由題意得F(2,0),因?yàn)辄c(diǎn)P在拋物線y2=8x上,|FP|=5,設(shè)點(diǎn)為,由拋物線定義知,,解得,不妨取P(3,2),代入雙曲線-=1,得-=1,又因?yàn)閍2+b2=4,解得a=1,b=,因?yàn)殡p曲線的漸近線方程為,所以雙曲線的漸近線為y=±x,由點(diǎn)到直線的距離公式可得,點(diǎn)F到雙曲線的漸近線的距離.故答案為:【點(diǎn)睛】本題考查雙曲線和拋物線方程及其幾何性質(zhì);考查運(yùn)算求解能力和知識(shí)遷移能力;靈活運(yùn)用雙曲線和拋物線的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)5【解析】
(1)首先消去參數(shù)得到曲線的普通方程,再根據(jù),,得到曲線的極坐標(biāo)方程;(2)將直線的參數(shù)方程代入曲線的直角坐標(biāo)方程,利用直線的參數(shù)方程中參數(shù)的幾何意義得解;【詳解】解:(1)曲線:消去參數(shù)得到:,由,,得所以(2)代入,設(shè),,由直線的參數(shù)方程參數(shù)的幾何意義得:【點(diǎn)睛】本題考查參數(shù)方程、極坐標(biāo)方程、普通方程的互化,以及直線參數(shù)方程的幾何意義的應(yīng)用,屬于中檔題.18.(1)(2)【解析】
(1)因?yàn)椋?,由余弦定理得,化?jiǎn)得,可得,解得,又因?yàn)?,所?(6分)(2)因?yàn)椋?,則(當(dāng)且僅當(dāng)時(shí),取等號(hào)).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號(hào)),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號(hào)),所以的周長(zhǎng)的最小值為.19.(1)見解析;(2).【解析】
(1)利用中位線的性質(zhì)得出,然后利用線面平行的判定定理可證明出平面;(2)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可求得直線與平面所成角的正弦值.【詳解】(1)因?yàn)?、分別為、的中點(diǎn),所以.又因?yàn)槠矫?,平面,所以平面;?)以點(diǎn)為坐標(biāo)原點(diǎn),、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),則,,,,,,,.設(shè)平面的法向量為,則,即,令,則,,所以.設(shè)直線與平面所成角為,所以.因此,直線與平面所成角的正弦值為.【點(diǎn)睛】本題考查線面平行的證明,同時(shí)也考查了利用空間向量法計(jì)算直線與平面所成的角,考查推理能力與計(jì)算能力,屬于中等題.20.證明見解析【解析】
根據(jù)相似三角形的判定定理,已知兩個(gè)三角形有公共角,題中未給出線段比例關(guān)系,故可根據(jù)判定定理一需找到另外一組相等角,結(jié)合平面幾何的知識(shí)證得即可.【詳解】證明:∵,所以,又因?yàn)?,所以.在與中,,,故~.【點(diǎn)睛】本題考查平面幾何中同弧所對(duì)的圓心角與圓周角的關(guān)系、相似三角形的判定定理;考查邏輯推理能力和數(shù)形結(jié)合思想;分析圖形,找出角與角之間的關(guān)系是證明本題的關(guān)鍵;屬于基礎(chǔ)題.21.(1);(2).【解析】
(1)平面平面,建立坐標(biāo)系,根據(jù)法向量互相垂直求得;(2)求兩個(gè)平面的法向量的夾角.【詳解】(1)如圖,以為原點(diǎn),在平面內(nèi)垂直于的直線為軸所在的直線分別為軸,軸,建立空間直角坐標(biāo)系,則,設(shè)為平面的一個(gè)法向量,由得,取,則因?yàn)槠矫娴囊粋€(gè)法向量為由平面平面,得所以即.(2)設(shè)二面角的大小為,當(dāng)平面的一個(gè)法向量為,綜上,二面角的余弦值為.【點(diǎn)睛】本題考查用空間向量求平面間的夾角,平面與平面垂直的判定,二面角的平面角及求法,難度一般.22.(1)見解析;(2)-∞,1【解析】
(1)f′(x)=(x+1)ex-ax-a=(x+1)(ex-a).對(duì)a分類討論,即可得出單調(diào)性.
(2)由xex-ax-a+1≥0,可得a(x+1)≤xex+1,當(dāng)x=-1時(shí),0≤-1e+1恒成立.當(dāng)x>-1時(shí),a≤xe【詳解】解法一:(1)f①當(dāng)a≤0時(shí),x(-∞-1(-1,+∞)f-0+f(x)↘極小值↗所以f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)單調(diào)遞增.②當(dāng)a>0時(shí),f'(x)=0的根為x=ln若lna>-1,即a>x(-∞,-1)-1(-1,ln(f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,-1),(lna,+∞)上單調(diào)遞增,在若lna=-1,即a=f'(x)≥0在(-∞,+∞)上恒成立,所以f(x)在若lna<-1,即0<a<x(-∞,ln(-1(-1,+∞)f+0-0+f(x)↗極大值↘極小值↗所以f(x)在(-∞,lna),(-1,+∞)上單調(diào)遞增,在綜上:當(dāng)a≤0時(shí),f(x)在(-∞,-1)上單調(diào)遞減,在(-1,+∞)上單調(diào)遞增;當(dāng)0<a<1e時(shí),f(x)在(-∞,lna),自a=1e時(shí),f(x)在當(dāng)a>1e時(shí),f(x)在(-∞,-1),(ln(2)因?yàn)閤ex-ax-a+1≥0當(dāng)x=-1時(shí),0≤-1當(dāng)x>-1時(shí),a≤x令g(x)=xex設(shè)h(x)=e因?yàn)閔'(x)=e即hx=e又因?yàn)閔
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外貿(mào)出口購(gòu)銷合同范例
- 房屋裝修責(zé)任合同范例
- 拆遷活動(dòng)板房合同模板
- 房子裝修安全合同模板
- 境外股權(quán)收購(gòu)合同模板簡(jiǎn)易
- 承包外包服務(wù)合同范例
- 學(xué)校建筑樓房合同范例
- 加工項(xiàng)目轉(zhuǎn)讓合同范例
- 房產(chǎn)代理合同范例
- 房屋補(bǔ)貼合同范例
- 眼科學(xué)基礎(chǔ)病例分析
- 混合痔中醫(yī)護(hù)理 方案
- 美國(guó)刑法制度
- 慢性病防治和健康生活知識(shí)講座
- 2024年教師招聘考試-中小學(xué)校長(zhǎng)招聘筆試參考題庫含答案
- 中華民族共同體概論課件第十六講文明新路與人類命運(yùn)共同體
- 人教部編版一年級(jí)道德與法治上冊(cè)第10課《吃飯有講究》精美課件
- 2024-2030全球與中國(guó)鉑銅合金市場(chǎng)現(xiàn)狀及未來發(fā)展趨勢(shì)
- 山西開放大學(xué)2024年《學(xué)前兒童心理健康教育》形成性考核測(cè)試1-4答案
- 移風(fēng)易俗鄉(xiāng)風(fēng)文明工作現(xiàn)場(chǎng)推進(jìn)會(huì)上的發(fā)言范文
- 供電企業(yè)輿情的預(yù)防及處置
評(píng)論
0/150
提交評(píng)論