版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2021-2022高考數(shù)學(xué)模擬試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知直四棱柱的所有棱長(zhǎng)相等,,則直線與平面所成角的正切值等于()A. B. C. D.2.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.3.盒中有6個(gè)小球,其中4個(gè)白球,2個(gè)黑球,從中任取個(gè)球,在取出的球中,黑球放回,白球則涂黑后放回,此時(shí)盒中黑球的個(gè)數(shù),則()A., B.,C., D.,4.執(zhí)行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.5.已知橢圓:的左,右焦點(diǎn)分別為,,過(guò)的直線交橢圓于,兩點(diǎn),若,且的三邊長(zhǎng),,成等差數(shù)列,則的離心率為()A. B. C. D.6.若,則,,,的大小關(guān)系為()A. B.C. D.7.已知平面向量,滿足,且,則與的夾角為()A. B. C. D.8.函數(shù)的圖象大致是()A. B.C. D.9.點(diǎn)在曲線上,過(guò)作軸垂線,設(shè)與曲線交于點(diǎn),,且點(diǎn)的縱坐標(biāo)始終為0,則稱點(diǎn)為曲線上的“水平黃金點(diǎn)”,則曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為()A.0 B.1 C.2 D.310.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.3 C. D.411.展開(kāi)項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.5112.函數(shù)()的圖像可以是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.某中學(xué)數(shù)學(xué)競(jìng)賽培訓(xùn)班共有10人,分為甲、乙兩個(gè)小組,在一次階段測(cè)試中兩個(gè)小組成績(jī)的莖葉圖如圖所示,若甲組5名同學(xué)成績(jī)的平均數(shù)為81,乙組5名同學(xué)成績(jī)的中位數(shù)為73,則x-y的值為_(kāi)_______.14.若曲線(其中常數(shù))在點(diǎn)處的切線的斜率為1,則________.15.的展開(kāi)式中所有項(xiàng)的系數(shù)和為_(kāi)_____,常數(shù)項(xiàng)為_(kāi)_____.16.某學(xué)習(xí)小組有名男生和名女生.若從中隨機(jī)選出名同學(xué)代表該小組參加知識(shí)競(jìng)賽,則選出的名同學(xué)中恰好名男生名女生的概率為_(kāi)__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點(diǎn),且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.18.(12分)中,內(nèi)角的對(duì)邊分別為,.(1)求的大?。唬?)若,且為的重心,且,求的面積.19.(12分)已知等差數(shù)列滿足,.(l)求等差數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.20.(12分)記拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,且直線的斜率為1,當(dāng)直線過(guò)點(diǎn)時(shí),.(1)求拋物線的方程;(2)若,直線與交于點(diǎn),,求直線的斜率.21.(12分)已知拋物線的焦點(diǎn)為,直線交于兩點(diǎn)(異于坐標(biāo)原點(diǎn)O).(1)若直線過(guò)點(diǎn),,求的方程;(2)當(dāng)時(shí),判斷直線是否過(guò)定點(diǎn),若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.22.(10分)已知橢圓,左、右焦點(diǎn)為,點(diǎn)為上任意一點(diǎn),若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動(dòng)直線過(guò)點(diǎn)與交于兩點(diǎn),在軸上是否存在定點(diǎn),使成立,說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.D【解析】
以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.求解平面的法向量,利用線面角的向量公式即得解.【詳解】如圖所示的直四棱柱,,取中點(diǎn),以為坐標(biāo)原點(diǎn),所在直線為x軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系.設(shè),則,.設(shè)平面的法向量為,則取,得.設(shè)直線與平面所成角為,則,,∴直線與平面所成角的正切值等于故選:D【點(diǎn)睛】本題考查了向量法求解線面角,考查了學(xué)生空間想象,邏輯推理,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.2.C【解析】
因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾担杂?,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.3.C【解析】
根據(jù)古典概型概率計(jì)算公式,計(jì)算出概率并求得數(shù)學(xué)期望,由此判斷出正確選項(xiàng).【詳解】表示取出的為一個(gè)白球,所以.表示取出一個(gè)黑球,,所以.表示取出兩個(gè)球,其中一黑一白,,表示取出兩個(gè)球?yàn)楹谇?,,表示取出兩個(gè)球?yàn)榘浊?,,所?所以,.故選:C【點(diǎn)睛】本小題主要考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望的計(jì)算,屬于中檔題.4.C【解析】
由程序語(yǔ)言依次計(jì)算,直到時(shí)輸出即可【詳解】程序的運(yùn)行過(guò)程為當(dāng)n=2時(shí),時(shí),,此時(shí)輸出.故選:C【點(diǎn)睛】本題考查由程序框圖計(jì)算輸出結(jié)果,屬于基礎(chǔ)題5.C【解析】
根據(jù)等差數(shù)列的性質(zhì)設(shè)出,,,利用勾股定理列方程,結(jié)合橢圓的定義,求得.再利用勾股定理建立的關(guān)系式,化簡(jiǎn)后求得離心率.【詳解】由已知,,成等差數(shù)列,設(shè),,.由于,據(jù)勾股定理有,即,化簡(jiǎn)得;由橢圓定義知的周長(zhǎng)為,有,所以,所以;在直角中,由勾股定理,,∴離心率.故選:C【點(diǎn)睛】本小題主要考查橢圓離心率的求法,考查橢圓的定義,考查等差數(shù)列的性質(zhì),屬于中檔題.6.D【解析】因?yàn)椋?,因?yàn)?,,所?.綜上;故選D.7.C【解析】
根據(jù),兩邊平方,化簡(jiǎn)得,再利用數(shù)量積定義得到求解.【詳解】因?yàn)槠矫嫦蛄?,滿足,且,所以,所以,所以,所以,所以與的夾角為.故選:C【點(diǎn)睛】本題主要考查平面向量的模,向量的夾角和數(shù)量積運(yùn)算,屬于基礎(chǔ)題.8.A【解析】
根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時(shí),,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時(shí),若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯(cuò)誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對(duì)復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.9.C【解析】
設(shè),則,則,即可得,設(shè),利用導(dǎo)函數(shù)判斷的零點(diǎn)的個(gè)數(shù),即為所求.【詳解】設(shè),則,所以,依題意可得,設(shè),則,當(dāng)時(shí),,則單調(diào)遞減;當(dāng)時(shí),,則單調(diào)遞增,所以,且,有兩個(gè)不同的解,所以曲線上的“水平黃金點(diǎn)”的個(gè)數(shù)為2.故選:C【點(diǎn)睛】本題考查利用導(dǎo)函數(shù)處理零點(diǎn)問(wèn)題,考查向量的坐標(biāo)運(yùn)算,考查零點(diǎn)存在性定理的應(yīng)用.10.C【解析】
首先把三視圖轉(zhuǎn)換為幾何體,該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,由柱體、椎體的體積公式進(jìn)一步求出幾何體的體積.【詳解】解:根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為由一個(gè)三棱柱體,切去一個(gè)三棱錐體,如圖所示:故:.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積、需熟記柱體、椎體的體積公式,考查了空間想象能力,屬于基礎(chǔ)題.11.B【解析】
展開(kāi)式中的每一項(xiàng)是由每個(gè)括號(hào)中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開(kāi)式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個(gè)括號(hào)都出1,即;(2)兩個(gè)括號(hào)出,兩個(gè)括號(hào)出,一個(gè)括號(hào)出1,即;(3)一個(gè)括號(hào)出,一個(gè)括號(hào)出,三個(gè)括號(hào)出1,即;所以展開(kāi)項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識(shí)的生成過(guò)程,考查定理的本質(zhì),即展開(kāi)式中每一項(xiàng)是由每個(gè)括號(hào)各出一項(xiàng)相乘組合而成的.12.B【解析】
根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點(diǎn)睛】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)莖葉圖中的數(shù)據(jù),結(jié)合平均數(shù)與中位數(shù)的概念,求出x、y的值.【詳解】根據(jù)莖葉圖中的數(shù)據(jù),得:甲班5名同學(xué)成績(jī)的平均數(shù)為,解得;又乙班5名同學(xué)的中位數(shù)為73,則;.故答案為:.【點(diǎn)睛】本題考查莖葉圖及根據(jù)莖葉圖計(jì)算中位數(shù)、平均數(shù),考查數(shù)據(jù)分析能力,屬于簡(jiǎn)單題.14.【解析】
利用導(dǎo)數(shù)的幾何意義,由解方程即可.【詳解】由已知,,所以,解得.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查學(xué)生的基本運(yùn)算能力,是一道基礎(chǔ)題.15.3-260【解析】
(1)令求得所有項(xiàng)的系數(shù)和;(2)先求出展開(kāi)式中的常數(shù)項(xiàng)與含的系數(shù),再求展開(kāi)式中的常數(shù)項(xiàng).【詳解】將代入,得所有項(xiàng)的系數(shù)和為3.因?yàn)榈恼归_(kāi)式中含的項(xiàng)為,的展開(kāi)式中含常數(shù)項(xiàng),所以的展開(kāi)式中的常數(shù)項(xiàng)為.故答案為:3;-260【點(diǎn)睛】本題考查利用二項(xiàng)展開(kāi)式的通項(xiàng)公式解決二項(xiàng)展開(kāi)式的特殊項(xiàng)問(wèn)題,屬于基礎(chǔ)題.16.【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機(jī)選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點(diǎn)睛】組合數(shù)與概率的基本運(yùn)用,熟悉組合數(shù)公式三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析;(Ⅲ).【解析】
(I)取的中點(diǎn),連接,通過(guò)證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【詳解】(Ⅰ)取的中點(diǎn),連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點(diǎn),所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點(diǎn),即面,.【點(diǎn)睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.18.(1);(2)【解析】
(1)利用正弦定理,轉(zhuǎn)化為,分析運(yùn)算即得解;(2)由為的重心,得到,平方可得解c,由面積公式即得解.【詳解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于為的重心故,∴解得或舍∴的面積為.【點(diǎn)睛】本題考查了正弦定理和余弦定理的綜合應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.19.(1);(2).【解析】試題分析:(1)設(shè)等差數(shù)列滿的首項(xiàng)為,公差為,代入兩等式可解。(2)由(1),代入得,所以通過(guò)裂項(xiàng)求和可求得。試題解析:(1)設(shè)等差數(shù)列的公差為,則由題意可得,解得.所以.(2)因?yàn)?,所?所以.20.(1)(2)0【解析】
(1)根據(jù)題意,設(shè)直線,與聯(lián)立,得,再由弦長(zhǎng)公式,求解.(2)設(shè),根據(jù)直線的斜率為1,則,得到,再由,所以線段中點(diǎn)的縱坐標(biāo)為,然后直線的方程與直線的方程聯(lián)立解得交點(diǎn)H的縱坐標(biāo),說(shuō)明直線軸,直線的斜率為0.【詳解】(1)依題意,,則直線,聯(lián)立得;設(shè),則,解得,故拋物線的方程為.(2),因?yàn)橹本€的斜率為1,則,所以,因?yàn)椋跃€段中點(diǎn)的縱坐標(biāo)為.直線的方程為,即①直線的方程為,即②聯(lián)立①②解得即點(diǎn)的縱坐標(biāo)為,即直線軸,故直線的斜率為0.如果直線的斜率不存在,結(jié)論也顯然成立,綜上所述,直線的斜率為0.【點(diǎn)睛】本題考查拋物線的方程、直線與拋物線的位置關(guān)系,還考查推理論證能力以及化歸與轉(zhuǎn)化思想,屬于中檔題.21.(1)(2)直線過(guò)定點(diǎn)【解析】
設(shè).(1)由題意知,.設(shè)直線的方程為,由得,則,由根與系數(shù)的關(guān)系可得,所以.由,得,解得.所以拋物線的方程為.(2)設(shè)直線的方程為,由得,由根與系數(shù)的關(guān)系可得,所以,解得.所以直線的方程為,所以時(shí),直線過(guò)定點(diǎn).22.(1)(2)存在;詳見(jiàn)解析【解析】
(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 變電站設(shè)備缺陷管理制度范文(2篇)
- 幼兒園食堂液化氣灶油灶操作制度(2篇)
- 外宿生安全管理制度模版(2篇)
- 2024年版旅游服務(wù)合同:高端定制旅游服務(wù)的詳細(xì)條款
- 2024塔吊二手買(mǎi)賣(mài)合同附帶備件供應(yīng)協(xié)議3篇
- 2024年電子商品銷(xiāo)售合同with售后服務(wù)條款
- 建立醫(yī)院手術(shù)風(fēng)險(xiǎn)控制制度
- 房屋建筑合同書(shū)范例
- 英文化工采購(gòu)合同范本
- 燈具訂購(gòu)合同范本
- 部編版二年級(jí)語(yǔ)文上冊(cè)第二單元復(fù)習(xí)課件
- 地 理知識(shí)點(diǎn)-2024-2025學(xué)年七年級(jí)地理上學(xué)期(人教版2024)
- 翻譯技術(shù)實(shí)踐智慧樹(shù)知到期末考試答案章節(jié)答案2024年山東師范大學(xué)
- 基礎(chǔ)有機(jī)化學(xué)實(shí)驗(yàn)智慧樹(shù)知到期末考試答案章節(jié)答案2024年浙江大學(xué)
- 2010版GMP附錄:計(jì)算機(jī)化系統(tǒng)整體及條款解讀(完整精華版)
- 網(wǎng)吧企業(yè)章程范本
- 商業(yè)綜合體、購(gòu)物中心、百貨商場(chǎng)商業(yè)運(yùn)營(yíng)項(xiàng)目收益測(cè)算模板
- 丙烯儲(chǔ)罐畢業(yè)設(shè)計(jì)
- 水工建筑物水泥灌漿施工技術(shù)規(guī)范
- 鋼質(zhì)焊接氣瓶設(shè)計(jì)和制造培訓(xùn)教材(共36頁(yè)).ppt
- 小學(xué)道德與法治生活化探究教研課題論文開(kāi)題結(jié)題中期研究報(bào)告(反思經(jīng)驗(yàn)交流)
評(píng)論
0/150
提交評(píng)論