版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
上海市七校聯(lián)考2024-2025學年高考模擬最后十套:數(shù)學試題(一)考前提分仿真卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.2.已知數(shù)列中,,若對于任意的,不等式恒成立,則實數(shù)的取值范圍為()A. B.C. D.3.已知復(fù)數(shù)z滿足(其中i為虛數(shù)單位),則復(fù)數(shù)z的虛部是()A. B.1 C. D.i4.正方體,是棱的中點,在任意兩個中點的連線中,與平面平行的直線有幾條()A.36 B.21 C.12 D.65.在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為()A. B. C. D.6.設(shè),集合,則()A. B. C. D.7.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.48.已知函數(shù)的導(dǎo)函數(shù)為,記,,…,N.若,則()A. B. C. D.9.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.310.已知非零向量,滿足,,則與的夾角為()A. B. C. D.11.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.12.已知等差數(shù)列中,,則()A.20 B.18 C.16 D.14二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)數(shù)列的前項和為,且對任意正整數(shù),都有,則___14.已知圓C:經(jīng)過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.15.已知直線與圓心為的圓相交于兩點,且,則實數(shù)的值為_________.16.已知數(shù)列是各項均為正數(shù)的等比數(shù)列,若,則的最小值為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓C:x24+y2=1,F(xiàn)為其右焦點,直線l:y=kx+m(km<0)與橢圓交于P(x1(I)試用x1表示|PF|(II)證明:原點O到直線l的距離為定值.18.(12分)隨著電子閱讀的普及,傳統(tǒng)紙質(zhì)媒體遭受到了強烈的沖擊.某雜志社近9年來的紙質(zhì)廣告收入如下表所示:根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.243;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗,求得樣本相關(guān)系數(shù)的絕對值為0.984.(1)如果要用線性回歸方程預(yù)測該雜志社2019年的紙質(zhì)廣告收入,現(xiàn)在有兩個方案,方案一:選取這9年數(shù)據(jù)進行預(yù)測,方案二:選取后5年數(shù)據(jù)進行預(yù)測.從實際生活背景以及線性相關(guān)性檢驗的角度分析,你覺得哪個方案更合適?附:相關(guān)性檢驗的臨界值表:(2)某購物網(wǎng)站同時銷售某本暢銷書籍的紙質(zhì)版本和電子書,據(jù)統(tǒng)計,在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,現(xiàn)用此統(tǒng)計結(jié)果作為概率,若從上述讀者中隨機調(diào)查了3位,求購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.19.(12分)中國古建筑中的窗飾是藝術(shù)和技術(shù)的統(tǒng)一體,給人于美的享受.如圖(1)為一花窗;圖(2)所示是一扇窗中的一格,呈長方形,長30cm,寬26cm,其內(nèi)部窗芯(不含長方形邊框)用一種條形木料做成,由兩個菱形和六根支條構(gòu)成,整個窗芯關(guān)于長方形邊框的兩條對稱軸成軸對稱.設(shè)菱形的兩條對角線長分別為xcm和ycm,窗芯所需條形木料的長度之和為L.(1)試用x,y表示L;(2)如果要求六根支條的長度均不小于2cm,每個菱形的面積為130cm2,那么做這樣一個窗芯至少需要多長的條形木料(不計榫卯及其它損耗)?20.(12分)在直角坐標系中,以為極點,軸正半軸為極軸建立極坐標系.曲線的極坐標方程為:,曲線的參數(shù)方程為其中,為參數(shù),為常數(shù).(1)寫出與的直角坐標方程;(2)在什么范圍內(nèi)取值時,與有交點.21.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.22.(10分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過點,∴,.∴.故選:.本題考查了三角函數(shù)定義,和差公式,意在考查學生的計算能力.2.B【解析】
先根據(jù)題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉(zhuǎn)化為恒成立,再利用函數(shù)性質(zhì)解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B本題主要考查了數(shù)列的通項的求法以及函數(shù)的性質(zhì)的運用,屬于綜合性較強的題目,解題的關(guān)鍵是能夠由遞推數(shù)列求出通項公式和后面的轉(zhuǎn)化函數(shù),屬于難題.3.A【解析】
由虛數(shù)單位i的運算性質(zhì)可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.本題考查了虛數(shù)單位i的運算性質(zhì)、復(fù)數(shù)的概念,屬于基礎(chǔ)題.4.B【解析】
先找到與平面平行的平面,利用面面平行的定義即可得到.【詳解】考慮與平面平行的平面,平面,平面,共有,故選:B.本題考查線面平行的判定定理以及面面平行的定義,涉及到了簡單的組合問題,是一中檔題.5.D【解析】
利用直線與圓相交求出實數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎(chǔ)題.6.B【解析】
先化簡集合A,再求.【詳解】由得:,所以,因此,故答案為B本題主要考查集合的化簡和運算,意在考查學生對這些知識的掌握水平和計算推理能力.7.B【解析】
解出,分別代入選項中的值進行驗證.【詳解】解:,.當時,,此時不成立.當時,,此時成立,符合題意.故選:B.本題考查了不等式的解法,考查了集合的關(guān)系.8.D【解析】
通過計算,可得,最后計算可得結(jié)果.【詳解】由題可知:所以所以猜想可知:由所以所以故選:D本題考查導(dǎo)數(shù)的計算以及不完全歸納法的應(yīng)用,選擇題、填空題可以使用取特殊值,歸納猜想等方法的使用,屬中檔題.9.C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;10.B【解析】
由平面向量垂直的數(shù)量積關(guān)系化簡,即可由平面向量數(shù)量積定義求得與的夾角.【詳解】根據(jù)平面向量數(shù)量積的垂直關(guān)系可得,,所以,即,由平面向量數(shù)量積定義可得,所以,而,即與的夾角為.故選:B本題考查了平面向量數(shù)量積的運算,平面向量夾角的求法,屬于基礎(chǔ)題.11.D【解析】
先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.12.A【解析】
設(shè)等差數(shù)列的公差為,再利用基本量法與題中給的條件列式求解首項與公差,進而求得即可.【詳解】設(shè)等差數(shù)列的公差為.由得,解得.所以.故選:A本題主要考查了等差數(shù)列的基本量求解,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用行列式定義,得到與的關(guān)系,賦值,即可求出結(jié)果?!驹斀狻坑?,令,得,解得。本題主要考查行列式定義的應(yīng)用。14.【解析】
求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.本題考查了拋物線的準線、圓的弦長公式.15.0或6【解析】
計算得到圓心,半徑,根據(jù)得到,利用圓心到直線的距離公式解得答案.【詳解】,即,圓心,半徑.,故圓心到直線的距離為,即,故或.故答案為:或.本題考查了根據(jù)直線和圓的位置關(guān)系求參數(shù),意在考查學生的計算能力和轉(zhuǎn)化能力。16.40【解析】
設(shè)等比數(shù)列的公比為,根據(jù),可得,因為,根據(jù)均值不等式,即可求得答案.【詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項為正數(shù),,,當且僅當,即時,取得最小值.故答案為:.本題主要考查了求數(shù)列值的最值問題,解題關(guān)鍵是掌握等比數(shù)列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(I)|FP|=2-32x【解析】
(I)直接利用兩點間距離公式化簡得到答案.(II)設(shè)Ax3,y3,Bx4【詳解】(I)橢圓C:x24|FP|=x(II)設(shè)Ax3,y3,B4k2+1x2OA=OB,故y3PA=PF,故1+k由已知得:x3<x故1+k即1+k2?故原點O到直線l的距離為d=m本題考查了橢圓內(nèi)的線段長度,定值問題,意在考查學生的計算能力和綜合應(yīng)用能力.18.(1)選取方案二更合適;(2)【解析】
(1)可以預(yù)見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù),而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,所以有的把握認為與具有線性相關(guān)關(guān)系,從而可得結(jié)論;(2)求得購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書,由此能求出購買電子書人數(shù)多于只購買紙質(zhì)版本人數(shù)的概率.【詳解】(1)選取方案二更合適,理由如下:①題中介紹了,隨著電子閱讀的普及,傳統(tǒng)紙媒受到了強烈的沖擊,從表格中的數(shù)據(jù)中可以看出從2014年開始,廣告收入呈現(xiàn)逐年下降的趨勢,可以預(yù)見,2019年的紙質(zhì)廣告收入會接著下跌,前四年的增長趨勢已經(jīng)不能作為預(yù)測后續(xù)數(shù)據(jù)的依據(jù).②相關(guān)系數(shù)越接近1,線性相關(guān)性越強,因為根據(jù)9年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,我們沒有理由認為與具有線性相關(guān)關(guān)系;而后5年的數(shù)據(jù)得到的相關(guān)系數(shù)的絕對值,所以有的把握認為與具有線性相關(guān)關(guān)系.(2)因為在該網(wǎng)站購買該書籍的大量讀者中,只購買電子書的讀者比例為,紙質(zhì)版本和電子書同時購買的讀者比例為,所以從該網(wǎng)站購買該書籍的大量讀者中任取一位,購買電子書的概率為,只購買紙質(zhì)書的概率為,購買電子書人數(shù)多于只購買紙質(zhì)書人數(shù)有兩種情況:3人購買電子書,2人購買電子書一人只購買紙質(zhì)書.概率為:.本題主要考查最優(yōu)方案的選擇,考查了相關(guān)關(guān)系的定義以及互斥事件的概率與獨立事件概率公式的應(yīng)用,考查閱讀能力與運算求解能力,屬于中檔題.與實際應(yīng)用相結(jié)合的題型也是高考命題的動向,這類問題的特點是通過現(xiàn)實生活的事例考查書本知識,解決這類問題的關(guān)鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉(zhuǎn)化為數(shù)學模型進行解答.19.(1)(2)【解析】試題分析:(1)由條件可先求水平方向每根支條長,豎直方向每根支條長為,因此所需木料的長度之和L=(2)先確定范圍由可得,再由面積為130cm2,得,轉(zhuǎn)化為一元函數(shù),令,則在上為增函數(shù),解得L有最小值.試題解析:(1)由題意,水平方向每根支條長為cm,豎直方向每根支條長為cm,菱形的邊長為cm.從而,所需木料的長度之和L=cm.(2)由題意,,即,又由可得.所以.令,其導(dǎo)函數(shù)在上恒成立,故在上單調(diào)遞減,所以可得.則=.因為函數(shù)和在上均為增函數(shù),所以在上為增函數(shù),故當,即時L有最小值.答:做這樣一個窗芯至少需要cm長的條形木料.考點:函數(shù)應(yīng)用題20.(1),.(2)【解析】
(1)利用,代入可求;消參可得直角坐標方程.(2)將的參數(shù)方程代入的直角坐標方程,與有交點,可得,解不等式即可求解.【詳解】(1)(2)將的參數(shù)方程代入的直角坐標方程得:與有交點,即本題考查了極坐標方程與普通方程的轉(zhuǎn)化、參數(shù)方程與普通方程的轉(zhuǎn)化、直線與圓的位置關(guān)系的判斷,屬于基礎(chǔ)題.21.(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數(shù)據(jù)可證得為等邊三角形,又由于是的中點,所以,從而可證得結(jié)論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設(shè),因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,,設(shè)平面的法向量,由得取,則設(shè)直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設(shè)到平面的距離為,由,即,即,可得,設(shè)直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.此題考查的是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 政治學概論名詞解釋
- 企業(yè)職工高效學習掌握個人效率的提升法
- 環(huán)保應(yīng)急預(yù)案(6篇)
- 教科版二年級上冊科學期末測試卷【奪分金卷】
- 中國宏觀經(jīng)濟形勢分析與展望
- 傳統(tǒng)文化與兒童禮儀教育的融合
- 企業(yè)客服團隊能力建設(shè)與質(zhì)量管理探索
- 以太陽為動力溫暖千萬戶-家用太陽能供暖系統(tǒng)的發(fā)展與前景
- 創(chuàng)新教學方法在安全教育培訓(xùn)中的應(yīng)用
- 企業(yè)員工培訓(xùn)課程中的學生評價與調(diào)整策略
- 《法理學》(第三版教材)形成性考核作業(yè)1234答案
- 植物的抗熱性
- 《人際關(guān)系與溝通技巧》(第3版)-教學大綱
- 2023年中醫(yī)養(yǎng)生之藥膳食療考試試題
- 某土石方施工工程主要施工機械設(shè)備表
- 硅PU(塑料面層)檢驗批質(zhì)量驗收記錄表
- 高空除銹刷漆施工方案模板
- 信訪面試資料
- 【課件】《“敬畏生命珍愛生命”》主題班會課件
- 住宅物業(yè)危險源辨識評價表
- 《報告文學研究》(07562)自考考試復(fù)習題庫(含答案)
評論
0/150
提交評論