天津市新四區(qū)示范校2022年高考臨考沖刺數(shù)學試卷含解析_第1頁
天津市新四區(qū)示范校2022年高考臨考沖刺數(shù)學試卷含解析_第2頁
天津市新四區(qū)示范校2022年高考臨考沖刺數(shù)學試卷含解析_第3頁
天津市新四區(qū)示范校2022年高考臨考沖刺數(shù)學試卷含解析_第4頁
天津市新四區(qū)示范校2022年高考臨考沖刺數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在復平面內(nèi),復數(shù)(為虛數(shù)單位)對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.設(shè)集合(為實數(shù)集),,,則()A. B. C. D.3.函數(shù)的大致圖象為()A. B.C. D.4.在中所對的邊分別是,若,則()A.37 B.13 C. D.5.已知非零向量,滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件解:6.已知函數(shù),當時,的取值范圍為,則實數(shù)m的取值范圍是()A. B. C. D.7.己知全集為實數(shù)集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)8.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.409.已知函數(shù),給出下列四個結(jié)論:①函數(shù)的值域是;②函數(shù)為奇函數(shù);③函數(shù)在區(qū)間單調(diào)遞減;④若對任意,都有成立,則的最小值為;其中正確結(jié)論的個數(shù)是()A. B. C. D.10.方程在區(qū)間內(nèi)的所有解之和等于()A.4 B.6 C.8 D.1011.兩圓和相外切,且,則的最大值為()A. B.9 C. D.112.已知是的共軛復數(shù),則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)函數(shù),若存在實數(shù)m,使得關(guān)于x的方程有4個不相等的實根,且這4個根的平方和存在最小值,則實數(shù)a的取值范圍是______.14.若變量x,y滿足:,且滿足,則參數(shù)t的取值范圍為_______.15.給出以下式子:①tan25°+tan35°tan25°tan35°;②2(sin35°cos25°+cos35°cos65°);③其中,結(jié)果為的式子的序號是_____.16.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,證明:當時,;(2)若在只有一個零點,求的值.18.(12分)過點作傾斜角為的直線與曲線(為參數(shù))相交于M、N兩點.(1)寫出曲線C的一般方程;(2)求的最小值.19.(12分)已知,,分別是三個內(nèi)角,,的對邊,.(1)求;(2)若,,求,.20.(12分)如圖,四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形,在上,且面.(1)求證:是的中點;(2)在上是否存在點,使二面角為直角?若存在,求出的值;若不存在,說明理由.21.(12分)在平面直角坐標系xOy中,曲線C1的參數(shù)方程為(φ為參數(shù)),在以O(shè)為極點,x軸的正半軸為極軸的極坐標系中,曲線C2是圓心為(2,),半徑為1的圓.(1)求曲線C1的普通方程和C2的直角坐標方程;(2)設(shè)M為曲線C1上的點,N為曲線C2上的點,求|MN|的取值范圍.22.(10分)如圖,在四棱錐中,四邊形是直角梯形,底面,是的中點.(1).求證:平面平面;(2).若二面角的余弦值為,求直線與平面所成角的正弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

化簡復數(shù)為、的形式,可以確定對應的點位于的象限.【詳解】解:復數(shù)故復數(shù)對應的坐標為位于第三象限故選:.【點睛】本題考查復數(shù)代數(shù)形式的運算,復數(shù)和復平面內(nèi)點的對應關(guān)系,屬于基礎(chǔ)題.2.A【解析】

根據(jù)集合交集與補集運算,即可求得.【詳解】集合,,所以所以故選:A【點睛】本題考查了集合交集與補集的混合運算,屬于基礎(chǔ)題.3.A【解析】

利用特殊點的坐標代入,排除掉C,D;再由判斷A選項正確.【詳解】,排除掉C,D;,,,.故選:A.【點睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點,采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.4.D【解析】

直接根據(jù)余弦定理求解即可.【詳解】解:∵,∴,∴,故選:D.【點睛】本題主要考查余弦定理解三角形,屬于基礎(chǔ)題.5.C【解析】

根據(jù)向量的數(shù)量積運算,由向量的關(guān)系,可得選項.【詳解】,,∴等價于,故選:C.【點睛】本題考查向量的數(shù)量積運算和命題的充分、必要條件,屬于基礎(chǔ)題.6.C【解析】

求導分析函數(shù)在時的單調(diào)性、極值,可得時,滿足題意,再在時,求解的x的范圍,綜合可得結(jié)果.【詳解】當時,,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時,的取值范圍為,∴又當時,令,則,即,∴綜上所述,的取值范圍為.故選C.【點睛】本題考查了利用導數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.7.D【解析】

求解一元二次不等式化簡A,求解對數(shù)不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,

∴A={x|x2+2x-8>0}={x|x<-4或x>2},

由log2x<1,x>0,得0<x<2,

∴B={x|log2x<1}={x|0<x<2},

則,

∴.

故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數(shù)不等式,二次不等式的求法,是基礎(chǔ)題.8.A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學生的計算能力.9.C【解析】

化的解析式為可判斷①,求出的解析式可判斷②,由得,結(jié)合正弦函數(shù)得圖象即可判斷③,由得可判斷④.【詳解】由題意,,所以,故①正確;為偶函數(shù),故②錯誤;當時,,單調(diào)遞減,故③正確;若對任意,都有成立,則為最小值點,為最大值點,則的最小值為,故④正確.故選:C.【點睛】本題考查三角函數(shù)的綜合運用,涉及到函數(shù)的值域、函數(shù)單調(diào)性、函數(shù)奇偶性及函數(shù)最值等內(nèi)容,是一道較為綜合的問題.10.C【解析】

畫出函數(shù)和的圖像,和均關(guān)于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數(shù)和的圖像,易知:和均關(guān)于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數(shù)關(guān)于點中心對稱是解題的關(guān)鍵.11.A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.12.A【解析】

先利用復數(shù)的除法運算法則求出的值,再利用共軛復數(shù)的定義求出a+bi,從而確定a,b的值,求出a+b.【詳解】i,∴a+bi=﹣i,∴a=0,b=﹣1,∴a+b=﹣1,故選:A.【點睛】本題主要考查了復數(shù)代數(shù)形式的乘除運算,考查了共軛復數(shù)的概念,是基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

先確定關(guān)于x的方程當a為何值時有4個不相等的實根,再將這四個根的平方和表示出來,利用函數(shù)思想來判斷當a為何值時這4個根的平方和存在最小值即可.【詳解】由題意,當時,,此時,此時函數(shù)在單調(diào)遞減,在單調(diào)遞增,方程最多2個不相等的實根,舍;當時,函數(shù)圖象如下所示:從左到右方程,有4個不相等的實根,依次為,,,,即,由圖可知,故,且,,從而,令,顯然,,要使該式在時有最小值,則對稱軸,解得.綜上所述,實數(shù)a的取值范圍是.【點睛】本題考查了函數(shù)和方程的知識,但需要一定的邏輯思維能力,屬于較難題.14.【解析】

根據(jù)變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉(zhuǎn)與可行域有交點即可,再結(jié)合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當時,滿足條件,當時,直線得斜率應該不小于AC,而不大于AB,即或,解得,且,綜上:參數(shù)t的取值范圍為.故答案為:【點睛】本題主要考查線性規(guī)劃的應用,還考查了轉(zhuǎn)化運算求解的能力,屬于中檔題.15.①②③【解析】

由已知分別結(jié)合和差角的正切及正弦余弦公式進行化簡即可求解.【詳解】①∵tan60°=tan(25°+35°),tan25°+tan35°tan25°tan35°;tan25°tan35°,,②2(sin35°cos25°+cos35°cos65°)=2(sin35°cos25°+cos35°sin25°),=2sin60°;③tan(45°+15°)=tan60°;故答案為:①②③【點睛】本題主要考查了兩角和與差的三角公式在三角化簡求值中的應用,屬于中檔試題.16.【解析】

由可知R為中點,設(shè),由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【詳解】如圖,由可知R為MN的中點,所以,,設(shè),則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以O(shè)Q為直徑的圓上,所以.故答案為:.【點睛】本題考查直線和圓的位置關(guān)系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數(shù)形結(jié)合能力和計算能力,難度較難.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導函數(shù),根據(jù)導函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設(shè)函數(shù),則.當時,,所以在單調(diào)遞減.而,故當時,,即.(2)設(shè)函數(shù).在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.18.(1);(2).【解析】

(1)將曲線的參數(shù)方程消參得到普通方程;(2)寫出直線MN的參數(shù)方程,將參數(shù)方程代入曲線方程,并將其化為一個關(guān)于的一元二次方程,根據(jù),結(jié)合韋達定理和余弦函數(shù)的性質(zhì),即可求出的最小值.【詳解】(1)由曲線C的參數(shù)方程(是參數(shù)),可得,即曲線C的一般方程為.(2)直線MN的參數(shù)方程為(t為參數(shù)),將直線MN的參數(shù)方程代入曲線,得,整理得,設(shè)M,N對應的對數(shù)分別為,,則,當時,取得最小值為.【點睛】該題考查的是有關(guān)參數(shù)方程的問題,涉及到的知識點有參數(shù)方程向普通方程的轉(zhuǎn)化,直線的參數(shù)方程的應用,屬于簡單題目.19.(1);(2),或,.【解析】

(1)利用正弦定理,轉(zhuǎn)化原式為,結(jié)合,可得,即得解;(2)由余弦定理,結(jié)合題中數(shù)據(jù),可得解【詳解】(1)由及正弦定理得.因為,所以,代入上式并化簡得.由于,所以.又,故.(2)因為,,,由余弦定理得即,所以.而,所以,為一元二次方程的兩根.所以,或,.【點睛】本題考查了正弦定理,余弦定理的綜合應用,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.20.(1)見解析;(2).【解析】試題分析:(1)連交于可得是中點,再根據(jù)面可得進而根據(jù)中位線定理可得結(jié)果;(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系,求出面的一個法向量,用表示面的一個法向量,由可得結(jié)果.試題解析:(1)證明:連交于,連是矩形,是中點.又面,且是面與面的交線,是的中點.(2)取中點,由(1)知兩兩垂直.以為原點,所在直線分別為軸,軸,軸建立空間直角坐標系(如圖),則各點坐標為.設(shè)存在滿足要求,且,則由得:,面的一個法向量為,面的一個法向量為,由,得,解得,故存在,使二面角為直角,此時.21.(1)C1:y2=1,C2:x2+(y﹣2)2=1;(2)[0,1]【解析】

(Ⅰ)消去參數(shù)φ可得C1的直角坐標方程,易得曲線C2的圓心的直角坐標為(0,2),可得C2的直角坐標方程;(Ⅱ)設(shè)M(3cosφ,sinφ),由三角函數(shù)和二次函數(shù)可得|MC2|的取值范圍,結(jié)合圓的知識可得答案.【詳解】(1)消去參數(shù)φ可得C1的普通方程為y2=1,∵曲線C2是圓心為(2,),半徑為1的圓,曲線C2的圓心的直角坐標為(0,2),∴C2的直角坐標方程為x2+(y﹣2)2=1;(2)設(shè)M(3cosφ,sinφ),則|MC2|,∵﹣1≤sinφ≤1,∴1≤|MC2|,由題意結(jié)合圖象可得|MN|的最小值為1﹣1=0,最大值為1,∴|MN|的取值范圍為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論