新高考數(shù)學(xué)一輪復(fù)習(xí)函數(shù)重難點(diǎn)專題18函數(shù)中的新定義問(wèn)題(原卷版)_第1頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)函數(shù)重難點(diǎn)專題18函數(shù)中的新定義問(wèn)題(原卷版)_第2頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)函數(shù)重難點(diǎn)專題18函數(shù)中的新定義問(wèn)題(原卷版)_第3頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)函數(shù)重難點(diǎn)專題18函數(shù)中的新定義問(wèn)題(原卷版)_第4頁(yè)
新高考數(shù)學(xué)一輪復(fù)習(xí)函數(shù)重難點(diǎn)專題18函數(shù)中的新定義問(wèn)題(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩4頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題18函數(shù)中的新定義問(wèn)題一、單選題1.SKIPIF1<0,SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),十八世紀(jì),函數(shù)SKIPIF1<0被“數(shù)學(xué)王子”高斯采用,因此得名高斯函數(shù),人們更習(xí)慣稱之為“取整函數(shù)”,則SKIPIF1<0(

)A.0 B.1 C.7 D.82.若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0即為“同族函數(shù)”.請(qǐng)你找出下面哪個(gè)函數(shù)解析式也能夠被用來(lái)構(gòu)造“同族函數(shù)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.已知函數(shù)SKIPIF1<0的定義域?yàn)閷?shí)數(shù)集R,滿足SKIPIF1<0(M是R的非空子集),在R上有兩個(gè)非空真子集A,B,且SKIPIF1<0,則SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.在數(shù)學(xué)中,布勞威爾不動(dòng)點(diǎn)定理是拓?fù)鋵W(xué)里一個(gè)非常重要的不動(dòng)點(diǎn)定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動(dòng)點(diǎn)定理的基石,布勞威爾不動(dòng)點(diǎn)定理得名于荷蘭數(shù)學(xué)家魯伊茲·布勞威爾(L.E.J.Brouwer),簡(jiǎn)單的講就是對(duì)于滿足一定條件的連續(xù)函數(shù)SKIPIF1<0存在一個(gè)點(diǎn)SKIPIF1<0,使得SKIPIF1<0,那么我們稱該函數(shù)為“不動(dòng)點(diǎn)函數(shù)”,下列為“不動(dòng)點(diǎn)函數(shù)”的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<05.四參數(shù)方程的擬合函數(shù)表達(dá)式為SKIPIF1<0,常用于競(jìng)爭(zhēng)系統(tǒng)和免疫檢測(cè),它的圖象是一個(gè)遞增(或遞減)的類似指數(shù)或?qū)?shù)曲線,或雙曲線(如SKIPIF1<0),還可以是一條S形曲線,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0時(shí),該擬合函數(shù)圖象是(

)A.類似遞增的雙曲線 B.類似遞增的對(duì)數(shù)曲線C.類似遞減的指數(shù)曲線 D.是一條S形曲線6.在函數(shù)SKIPIF1<0區(qū)間D上的導(dǎo)函數(shù)為SKIPIF1<0,SKIPIF1<0在區(qū)間D上的導(dǎo)函數(shù)為SKIPIF1<0.若在區(qū)間D上,SKIPIF1<0恒成立,則稱函數(shù)SKIPIF1<0在區(qū)間D上為“凸函數(shù)”.已知實(shí)數(shù)m為常數(shù),SKIPIF1<0,若對(duì)滿足SKIPIF1<0的任何一個(gè)實(shí)數(shù)m,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上都為“凸函數(shù)”,則SKIPIF1<0的最大值為(

)A.4 B.3 C.2 D.17.高斯是德國(guó)著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有數(shù)學(xué)王子的美譽(yù),他和阿基米德、牛頓并列為世界三大數(shù)學(xué)家,用其姓名命名的“高斯函數(shù)”為SKIPIF1<0,其中SKIPIF1<0表示不超過(guò)SKIPIF1<0的最大整數(shù),例如SKIPIF1<0,已知函數(shù)SKIPIF1<0,令函數(shù)SKIPIF1<0,則SKIPIF1<0的值域?yàn)椋?/p>

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<08.已知函數(shù)SKIPIF1<0,若在定義域內(nèi)存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,其中SKIPIF1<0為整數(shù),則稱函數(shù)SKIPIF1<0為定義域上的“SKIPIF1<0階局部奇函數(shù)”,若SKIPIF1<0是SKIPIF1<0上的“SKIPIF1<0階局部奇函數(shù)”,則實(shí)數(shù)SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.如圖所示的曲線就像橫放的葫蘆的軸截面的邊緣線,我們把這樣的曲線叫葫蘆曲線(也像湖面上高低起伏的小島在水中的倒影與自身形成的圖形,也可以形象地稱它為倒影曲線),它每過(guò)相同的間隔振幅就變化一次,且過(guò)點(diǎn)SKIPIF1<0,其對(duì)應(yīng)的方程為SKIPIF1<0(SKIPIF1<0,其中SKIPIF1<0為不超過(guò)x的最大整數(shù),SKIPIF1<0).若該葫蘆曲線上一點(diǎn)N的橫坐標(biāo)為SKIPIF1<0,則點(diǎn)N的縱坐標(biāo)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<010.設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,若函數(shù)SKIPIF1<0滿足條件:存在SKIPIF1<0,使SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0,則稱SKIPIF1<0為“倍縮函數(shù)”.若函數(shù)SKIPIF1<0(其中SKIPIF1<0)為“倍縮函數(shù)”,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題11.具有性質(zhì):SKIPIF1<0的函數(shù),我們稱為滿足“倒負(fù)”變換的函數(shù),下列函數(shù)中滿足“倒負(fù)”變換的函數(shù)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<012.對(duì)于函數(shù)SKIPIF1<0,若SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的不動(dòng)點(diǎn):若SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的穩(wěn)定點(diǎn),則下列函數(shù)有穩(wěn)定點(diǎn)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<013.華人數(shù)學(xué)家李天巖和美國(guó)數(shù)學(xué)家約克給出了“混沌”的數(shù)學(xué)定義,由此發(fā)展的混沌理論在生物學(xué)?經(jīng)濟(jì)學(xué)和社會(huì)學(xué)領(lǐng)域都有重要作用.在混沌理論中,函數(shù)的周期點(diǎn)是一個(gè)關(guān)鍵概念,定義如下:設(shè)SKIPIF1<0是定義在R上的函數(shù),對(duì)于SKIPIF1<0R,令SKIPIF1<0,若存在正整數(shù)k使得SKIPIF1<0,且當(dāng)0<j<k時(shí),SKIPIF1<0,則稱SKIPIF1<0是SKIPIF1<0的一個(gè)周期為k的周期點(diǎn).若SKIPIF1<0,下列各值是SKIPIF1<0周期為2的周期點(diǎn)的有(

)A.0 B.SKIPIF1<0 C.SKIPIF1<0 D.114.中國(guó)傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的“對(duì)稱美”.如圖所示的太極圖是由黑白兩個(gè)魚(yú)形紋組成的圓形圖案,充分體現(xiàn)了相互轉(zhuǎn)化、對(duì)稱統(tǒng)一的形式美、和諧美.在平面直角坐標(biāo)系中,如果一個(gè)函數(shù)的圖象能夠?qū)⒛硞€(gè)圓的周長(zhǎng)和面積同時(shí)平分,那么稱這個(gè)函數(shù)為這個(gè)圓的“優(yōu)美函數(shù)”.則下列說(shuō)法中正確的有(

)A.對(duì)于一個(gè)半徑為1的圓,其“優(yōu)美函數(shù)”僅有1個(gè)B.函數(shù)SKIPIF1<0可以是某個(gè)圓的“優(yōu)美函數(shù)”C.若函數(shù)SKIPIF1<0是“優(yōu)美函數(shù)”,則函數(shù)SKIPIF1<0的圖象一定是中心對(duì)稱圖形D.函數(shù)SKIPIF1<0可以同時(shí)是無(wú)數(shù)個(gè)圓的“優(yōu)美函數(shù)”15.德國(guó)著名數(shù)學(xué)家狄利克雷在數(shù)學(xué)領(lǐng)域成就顯著,狄利克雷函數(shù)就以其名命名,其解析式為SKIPIF1<0為有理數(shù),SKIPIF1<0為無(wú)理數(shù)),關(guān)于函數(shù)SKIPIF1<0,下列說(shuō)法正確的是(

).A.SKIPIF1<0既不是奇函數(shù),也不是偶函數(shù)B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0是周期函數(shù)D.SKIPIF1<0,使得SKIPIF1<016.函數(shù)SKIPIF1<0滿足條件:①對(duì)定義域內(nèi)任意不相等的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0恒有SKIPIF1<0;②對(duì)定義域內(nèi)任意兩個(gè)實(shí)數(shù)SKIPIF1<0,SKIPIF1<0都有SKIPIF1<0成立,則稱為SKIPIF1<0函數(shù),下列函數(shù)為SKIPIF1<0函數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<017.已知函數(shù)SKIPIF1<0,如果函數(shù)SKIPIF1<0滿足對(duì)任意SKIPIF1<0,都存在SKIPIF1<0,使得SKIPIF1<0,稱實(shí)數(shù)SKIPIF1<0為函數(shù)SKIPIF1<0的包容數(shù),下列數(shù)中可以為函數(shù)SKIPIF1<0的包容數(shù)的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<018.若正整數(shù)SKIPIF1<0,SKIPIF1<0只有1為公約數(shù),則稱SKIPIF1<0,SKIPIF1<0互質(zhì).對(duì)于正整數(shù)SKIPIF1<0,SKIPIF1<0是小于或等于SKIPIF1<0的正整數(shù)中與SKIPIF1<0互質(zhì)的數(shù)的個(gè)數(shù),函數(shù)SKIPIF1<0以其首名研究者歐拉命名,稱為歐拉函數(shù),例如:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列說(shuō)法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.?dāng)?shù)列SKIPIF1<0為等比數(shù)列 D.SKIPIF1<0,SKIPIF1<0三、填空題19.若存在常數(shù)k和b,使得函數(shù)SKIPIF1<0和SKIPIF1<0對(duì)其公共定義域上的任意實(shí)數(shù)x都滿足:SKIPIF1<0和SKIPIF1<0恒成立(或SKIPIF1<0和SKIPIF1<0恒成立),則稱此直線SKIPIF1<0為SKIPIF1<0和SKIPIF1<0的“隔離直線”.已知函數(shù)SKIPIF1<0,SKIPIF1<0,若函數(shù)SKIPIF1<0和SKIPIF1<0之間存在隔離直線SKIPIF1<0,則實(shí)數(shù)b的取值范圍是______.20.如果函數(shù)SKIPIF1<0在其定義域上有且僅有兩個(gè)不同的數(shù)SKIPIF1<0,滿足SKIPIF1<0,那么就稱函數(shù)SKIPIF1<0為“單值函數(shù)”,則下列四個(gè)函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.其中為“單值函數(shù)”的是______.(寫出所有符合題意的函數(shù)的序號(hào))21.若函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且滿足如下兩個(gè)條件:①SKIPIF1<0在SKIPIF1<0內(nèi)是單調(diào)遞增函數(shù);②存在SKIPIF1<0,使得SKIPIF1<0在SKIPIF1<0上的值域?yàn)镾KIPIF1<0那么就稱函數(shù)SKIPIF1<0為“希望函數(shù)”,若函數(shù)SKIPIF1<0是“希望函數(shù)”,則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)__________.22.若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上,對(duì)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為一個(gè)三角形的三邊長(zhǎng),則稱函數(shù)SKIPIF1<0為“三角形函數(shù)”.已知函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上是“三角形函數(shù)”,則實(shí)數(shù)SKIPIF1<0的取值范圍為_(kāi)___四、解答題23.函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且存在唯一常數(shù)SKIPIF1<0,使得對(duì)于任意的x總有SKIPIF1<0,成立.(1)若SKIPIF1<0,求SKIPIF1<0;(2)求證:函數(shù)SKIPIF1<0符合題設(shè)條件.24.已知函數(shù)SKIPIF1<0和SKIPIF1<0的定義域分別為SKIPIF1<0和SKIPIF1<0,若對(duì)任意的SKIPIF1<0,都恰好存在n個(gè)不同的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0(其中SKIPIF1<0),則稱SKIPIF1<0為SKIPIF1<0的“n重覆蓋函數(shù)”.(1)判斷下面兩組函數(shù)中,SKIPIF1<0是否為SKIPIF1<0的“n重覆蓋函數(shù)”,并說(shuō)明理由;①SKIPIF1<0,SKIPIF1<0,“4重覆蓋函數(shù)”;②SKIPIF1<0,SKIPIF1<0,“2重覆蓋函數(shù)”;(2)若SKIPIF1<0,SKIPIF1<0為SKIPIF1<0,SKIPIF1<0SKIPIF1<0的“9重覆蓋函數(shù)”,求SKIPIF1<0的最大值.25.已知O為坐標(biāo)原點(diǎn),SKIPIF1<0,對(duì)于函數(shù)SKIPIF1<0,稱向量SKIPIF1<0為函數(shù)SKIPIF1<0的伴隨向量,同時(shí)稱函數(shù)SKIPIF1<0為向量SKIPIF1<0的伴隨函數(shù).已知函數(shù)SKIPIF1<0,(1)求SKIPIF1<0的伴隨向量SKIPIF1<0,并求SKIPIF1<0.(2)關(guān)于x的方程SKIPIF1<0在SKIPIF1<0內(nèi)恒有兩個(gè)不相等實(shí)數(shù)解,求實(shí)數(shù)SKIPIF1<0的取值范圍.(3)將函數(shù)SKIPIF1<0圖象上每一點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的2倍,再把整個(gè)圖象向左平移SKIPIF1<0個(gè)單位長(zhǎng)度得到函數(shù)SKIPIF1<0的圖象,已知SKIPIF1<0,SKIPIF1<0,在函數(shù)SKIPIF1<0的圖象上是否存在一點(diǎn)P,使得SKIPIF1<0,若存在,求出點(diǎn)P坐標(biāo);若不存在,說(shuō)明理由.26.若函數(shù)SKIPIF1<0和SKIPIF1<0的圖象均連續(xù)不斷,SKIPIF1<0和SKIPIF1<0均在任意的區(qū)間上不恒為0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,存在非空區(qū)間SKIPIF1<0,滿足:SKIPIF1<0,均有SKIPIF1<0,則稱區(qū)間A為SKIPIF1<0和SKIPIF1<0的“SKIPIF1<0區(qū)間”(1)寫出SKIPIF1<0和SKIPIF1<0在SKIPIF1<0上的一個(gè)“SKIPIF1<0區(qū)間”,并說(shuō)明理由;(2)若SKIPIF1<0,且SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,SKIPIF1<0是SKIPIF1<0和SKIPIF1<0的“SKIPIF1<0區(qū)間”,證明:SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn).27.對(duì)于函數(shù)SKIPIF1<0,若在其定義域內(nèi)存在實(shí)數(shù)SKIPIF1<0,t,使得SKIPIF1<0成立,稱SKIPIF1<0是“t躍點(diǎn)”函數(shù),并稱SKIPIF1<0是函數(shù)SKIPIF1<0的“t躍點(diǎn)”.(1)若函數(shù)SKIPIF1<0,x∈R是“SKIPIF1<0躍點(diǎn)”函數(shù),求實(shí)數(shù)m的取值范圍;(2)若函數(shù)SKIPIF1<0,x∈R,求證:“SKIPIF1<0”是“對(duì)任意t∈R,SKIPIF1<0為‘t躍點(diǎn)’函數(shù)”的充要條件;(3)是否同時(shí)存在實(shí)數(shù)m和正整數(shù)n使得函數(shù)SKIPIF1<0在SKIPIF1<0上有2021個(gè)“SKIPIF1<0躍點(diǎn)”?若存在,請(qǐng)求出所有符合條件的m和n的值;若不存在,請(qǐng)說(shuō)明理由.28.對(duì)于函數(shù)SKIPIF1<0,若存在正常數(shù)SKIPIF1<0,使得對(duì)任意的SKIPIF1<0,都有SKIPIF1<0成立,我們稱函數(shù)SKIPIF1<0為“SKIPIF1<0同比不減函數(shù)”.(1)判斷函數(shù)SKIPIF1<0是否為“SKIPIF1<0同比不減函數(shù)”?并說(shuō)明理由;(2)若函數(shù)SKIPIF1<0是“SKIPIF1<0同比不減函數(shù)”,求實(shí)數(shù)SKIPIF1<0的取值范圍;(3)是否存在正常數(shù)SKIPIF1<0,使得函數(shù)SKIPIF1<0為“SKIPIF1<0同比不減函數(shù)”?若存在,求SKIPIF1<0的取值范圍;若不存在,請(qǐng)說(shuō)明理由.29.若函數(shù)SKIPIF1<0自變量的取值區(qū)間為[a,b]時(shí),函數(shù)值的取值區(qū)間恰為SKIPIF1<0,就稱區(qū)間[a,b]為SKIPIF1<0的一個(gè)“和諧區(qū)間”.已知函數(shù)SKIPIF1<0是定義在R上的奇函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求SKIPIF1<0的解析式;(2)求函數(shù)SKIPIF1<0在SKIPIF1<0內(nèi)的“和諧區(qū)間”;(3)若以函數(shù)SKIPIF1<0在定義域內(nèi)所有“和諧區(qū)間”上的圖像作為函數(shù)SKIPIF1<0的圖像,求函數(shù)SKIPIF1<0的值域30.對(duì)于定義域?yàn)镾KIPIF1<0的函數(shù)SKIPIF1<0,如果存在區(qū)間SKIPIF1<0,同時(shí)滿足:①SKIPIF1<0在

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論