版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2021-2022學年北京延慶縣聯(lián)考中考數(shù)學最后沖刺模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆?,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數(shù)關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C2.多項式ax2﹣4ax﹣12a因式分解正確的是()A.a(chǎn)(x﹣6)(x+2) B.a(chǎn)(x﹣3)(x+4) C.a(chǎn)(x2﹣4x﹣12) D.a(chǎn)(x+6)(x﹣2)3.一、單選題如圖,△ABC中,AB=4,AC=3,BC=2,將△ABC繞點A順時針旋轉60°得到△AED,則BE的長為()A.5 B.4 C.3 D.24.2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學記數(shù)法表示為()A.0.316×1010 B.0.316×1011 C.3.16×1010 D.3.16×10115.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結論:①AC垂直平分EF;②BE+DF=EF;③當∠DAF=15°時,△AEF為等邊三角形;④當∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④6.有以下圖形:平行四邊形、矩形、等腰三角形、線段、菱形,其中既是軸對稱圖形又是中心對稱圖形的有()A.5個B.4個C.3個D.2個7.下列計算正確的是A. B. C. D.8.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<09.已知y關于x的函數(shù)圖象如圖所示,則當y<0時,自變量x的取值范圍是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<210.下列分子結構模型的平面圖中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.方程3x(x-1)=2(x-1)的根是12.如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點A為圓心,BC長為半徑畫弧交AB于點D,分別以點A、D為圓心,AB長為半徑畫弧,兩弧交于點E,連接AE,DE,則∠EAD的余弦值是______.13.計算:=_______.14.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.15.函數(shù)y=中自變量x的取值范圍是________,若x=4,則函數(shù)值y=________.16.因式分解:x2﹣10x+24=_____.三、解答題(共8題,共72分)17.(8分)某商場以每件280元的價格購進一批商品,當每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當降價的方式促銷,經(jīng)調查發(fā)現(xiàn),如果每件商品降價1元,那么商場每月就可以多售出5件.降價前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價多少元?18.(8分)為營造濃厚的創(chuàng)建全國文明城市氛圍,東營市某中學委托制衣廠制作“最美東營人”和“最美志愿者”兩款文化衫.若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需145元.(1)求“最美東營人”和“最美志愿者”兩款文化衫每件各多少元?(2)若該中學要購進“最美東營人”和“最美志愿者”兩款文化衫共90件,總費用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,那么該中學有哪幾種購買方案?19.(8分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結果保留小數(shù)點后一位,參考數(shù)據(jù):).20.(8分)山地自行車越來越受中學生的喜愛.一網(wǎng)店經(jīng)營的一個型號山地自行車,今年一月份銷售額為30000元,二月份每輛車售價比一月份每輛車售價降價100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.求二月份每輛車售價是多少元?為了促銷,三月份每輛車售價比二月份每輛車售價降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進價是多少元?21.(8分)讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?22.(10分)已知△ABC在平面直角坐標系中的位置如圖所示.分別寫出圖中點A和點C的坐標;畫出△ABC繞點C按順時針方向旋轉90°后的△A′B′C′;求點A旋轉到點A′所經(jīng)過的路線長(結果保留π).23.(12分)小明準備用一塊矩形材料剪出如圖所示的四邊形ABCD(陰影部分),做成要制作的飛機的一個機翼,請你根據(jù)圖中的數(shù)據(jù)幫小明計算出CD的長度.(結果保留根號).24.對于某一函數(shù)給出如下定義:若存在實數(shù)p,當其自變量的值為p時,其函數(shù)值等于p,則稱p為這個函數(shù)的不變值.在函數(shù)存在不變值時,該函數(shù)的最大不變值與最小不變值之差q稱為這個函數(shù)的不變長度.特別地,當函數(shù)只有一個不變值時,其不變長度q為零.例如:下圖中的函數(shù)有0,1兩個不變值,其不變長度q等于1.(1)分別判斷函數(shù)y=x-1,y=x-1,y=x2有沒有不變值?如果有,直接寫出其不變長度;(2)函數(shù)y=2x2-bx.①若其不變長度為零,求b的值;②若1≤b≤3,求其不變長度q的取值范圍;(3)記函數(shù)y=x2-2x(x≥m)的圖象為G1,將G1沿x=m翻折后得到的函數(shù)圖象記為G2,函數(shù)G的圖象由G1和G2兩部分組成,若其不變長度q滿足0≤q≤3,則m的取值范圍為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數(shù)圖象,看懂圖形,認真分析是解題的關鍵.2、A【解析】試題分析:首先提取公因式a,進而利用十字相乘法分解因式得出即可.解:ax2﹣4ax﹣12a=a(x2﹣4x﹣12)=a(x﹣6)(x+2).故答案為a(x﹣6)(x+2).點評:此題主要考查了提取公因式法以及十字相乘法分解因式,正確利用十字相乘法分解因式是解題關鍵.3、B【解析】
根據(jù)旋轉的性質可得AB=AE,∠BAE=60°,然后判斷出△AEB是等邊三角形,再根據(jù)等邊三角形的三條邊都相等可得BE=AB.【詳解】解:∵△ABC繞點A順時針旋轉
60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等邊三角形,∴BE=AB,∵AB=1,∴BE=1.故選B.【點睛】本題考查了旋轉的性質,等邊三角形的判定與性質,主要利用了旋轉前后對應邊相等以及旋轉角的定義.4、C【解析】
科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】31600000000=3.16×1.故選:C.【點睛】本題考查科學記數(shù)法,解題的關鍵是掌握科學記數(shù)法的表示.5、C【解析】
①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質就可以得出EC=FC,就可以得出AC垂直平分EF,②設BC=a,CE=y,由勾股定理就可以得出EF與x、y的關系,表示出BE與EF,即可判斷BE+DF與EF關系不確定;③當∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出x與y的關系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關系不確定,只有當y=(2?)a時成立,(故②錯誤).③當∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當∠EAF=60°時,設EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,勾股定理的運用,等邊三角形的性質的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質解題時關鍵.6、C【解析】矩形,線段、菱形是軸對稱圖形,也是中心對稱圖形,符合題意;等腰三角形是軸對稱圖形,不是中心對稱圖形,不符合題意;平行四邊形不是軸對稱圖形,是中心對稱圖形,不符合題意.共3個既是軸對稱圖形又是中心對稱圖形.故選C.7、C【解析】
根據(jù)同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方逐一判斷即可.【詳解】、與不是同類項,不能合并,此選項錯誤;、,此選項錯誤;、,此選項正確;、,此選項錯誤.故選:.【點睛】此題考查的是整式的運算,掌握同類項的定義、同底數(shù)冪的除法、單項式乘單項式法則和積的乘方是解決此題的關鍵.8、B【解析】
根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點確定b2-4ac,根據(jù)x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.9、B【解析】y<0時,即x軸下方的部分,∴自變量x的取值范圍分兩個部分是?1<x<1或x>2.故選B.10、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A是軸對稱圖形,不是中心對稱圖形;B,C,D是軸對稱圖形,也是中心對稱圖形.故選:C.【點睛】掌握中心對稱圖形與軸對稱圖形的概念:軸對稱圖形:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形;中心對稱圖形:在同一平面內,如果把一個圖形繞某一點旋轉180°,旋轉后的圖形能和原圖形完全重合,那么這個圖形就叫做中心對稱圖形.二、填空題(本大題共6個小題,每小題3分,共18分)11、x1=1,x2=-.【解析】試題解析:3x(x-1)=2(x-1)3x(x-1)-2(x-1)=0(3x-2)(x-1)=03x-2=0,x-1=0解得:x1=1,x2=-.考點:解一元二次方程---因式分解法.12、【解析】
利用特殊三角形的三邊關系,求出AM,AE長,求比值.【詳解】解:如圖所示,設BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB=BC=x,根據(jù)題意得:AD=BC=x,AE=DE=AB=x,如圖,作EM⊥AD于M,則AM=AD=x,在Rt△AEM中,cos∠EAD=,故答案為:.【點睛】特殊三角形:30°-60°-90°特殊三角形,三邊比例是1::2,利用特殊三角函數(shù)值或者勾股定理可快速求出邊的實際關系.13、3【解析】
先把化成,然后再合并同類二次根式即可得解.【詳解】原式=2.故答案為【點睛】本題考查了二次根式的計算:先把各二次根式化為最簡二次根式,再進行然后合并同類二次根式.14、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最?。斀猓喝鐖D,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質,相似三角形的判定與性質等,找出點E的位置是解題的關鍵.15、x≥3y=1【解析】根據(jù)二次根式有意義的條件求解即可.即被開方數(shù)是非負數(shù),結果是x≥3,y=1.16、(x﹣4)(x﹣6)【解析】
因為(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【詳解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【點睛】本題考查的是因式分解,熟練掌握因式分解的方法是解題的關鍵.三、解答題(共8題,共72分)17、(1)4800元;(2)降價60元.【解析】試題分析:(1)先求出降價前每件商品的利潤,乘以每月銷售的數(shù)量就可以得出每月的總利潤;(2)設每件商品應降價x元,由銷售問題的數(shù)量關系“每件商品的利潤×商品的銷售數(shù)量=總利潤”列出方程,解方程即可解決問題.試題解析:(1)由題意得60×(360-280)=4800(元).即降價前商場每月銷售該商品的利潤是4800元;(2)設每件商品應降價x元,由題意得(360-x-280)(5x+60)=7200,解得x1=8,x2=60.要更有利于減少庫存,則x=60.即要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價60元.點睛:本題考查了列一元二次方程解實際問題的銷售問題,解答時根據(jù)銷售問題的數(shù)量關系建立方程是關鍵.18、(1)“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)有三種方案,具體見解析.【解析】
(1)設“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,根據(jù)若制作“最美東營人”文化衫2件,“最美志愿者”文化衫3件,共需90元;制作“最美東營人”文化衫3件,“最美志愿者”5件,共需11元建立方程組求出其解即可;(2)設購買“最美東營人”文化衫m(xù)件,根據(jù)總費用少于1595元,并且“最美東營人”文化衫的數(shù)量少于“最美志愿者”文化衫的數(shù)量,列出不等式組,然后求m的正整數(shù)解.【詳解】(1)設“最美東營人”文化衫每件x元,“最美志愿者”文化衫每件y元,由題意,得,解得:.答:“最美東營人”文化衫每件15元,“最美志愿者”文化衫每件20元;(2)設購買“最美東營人”文化衫m(xù)件,則購買“最美志愿者”文化衫(90-m)件,由題意,得,解得:41<m<1.∵m是整數(shù),∴m=42,43,2.則90-m=48,47,3.答:方案一:購買“最美東營人”文化衫42件,“最美志愿者”文化衫48件;方案二:購買“最美東營人”文化衫43件,“最美志愿者”文化衫47件;方案三:購買“最美東營人”文化衫2件,“最美志愿者”文化衫3件.【點睛】本題考查了二元一次方程組的運用,一元一次不等式組的運用,解決問題的關鍵是讀懂題意,找到關鍵描述語,進而找到所求的量的數(shù)量關系.19、5.7米.【解析】試題分析:由題意,過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.試題解析:解:如答圖,過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長約為5.7米.考點:1.解直角三角形的應用(仰角俯角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.矩形的判定和性質.20、(1)二月份每輛車售價是900元;(2)每輛山地自行車的進價是600元.【解析】
(1)設二月份每輛車售價為x元,則一月份每輛車售價為(x+100)元,根據(jù)數(shù)量=總價÷單價,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設每輛山地自行車的進價為y元,根據(jù)利潤=售價﹣進價,即可得出關于y的一元一次方程,解之即可得出結論.【詳解】(1)設二月份每輛車售價為x元,則一月份每輛車售價為(x+100)元,根據(jù)題意得:,解得:x=900,經(jīng)檢驗,x=900是原分式方程的解,答:二月份每輛車售價是900元;(2)設每輛山地自行車的進價為y元,根據(jù)題意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每輛山地自行車的進價是600元.【點睛】本題考查了分式方程的應用、一元一次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.21、周瑜去世的年齡為16歲.【解析】
設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.根據(jù)題意建立方程求出其值就可以求出其結論.【詳解】設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.由題意得;10(x﹣1)+x=x2,解得:x1=5,x2=6當x=5時,周瑜的年齡25歲,非而立之年,不合題意,舍去;當x=6時,周瑜年齡為16歲,完全符合題意.答:周瑜去世的年齡為16歲.【點睛】本題是一道數(shù)字問題的運用題,考查了列一元二次方程解實際問題的運用,在解答中理解而立之年是一個人10歲的年齡是關鍵.22、(1)、(2)見解析(3)【解析】試題分析:(1)根據(jù)點的平面直角坐標系中點的位置寫出點的坐標;(2)根據(jù)旋轉圖形的性質畫出旋轉后的圖形;(3)點A所經(jīng)過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據(jù)勾股定理可得:AC=3,則.考點:圖形的旋轉、扇形的弧長計算公式.23、CD的長度為17﹣17cm.【解析】
在直角三角形中用三角函數(shù)求出FD,BE的長,而FC=AE=AB+BE,而CD=FC-FD,從而得到答案.【詳解】解:由題意,在Rt△BEC中,∠E=90°,∠EBC=60°,∴∠BCE=30°,tan30°=,∴BE=ECtan30°=51×=17(cm);∴CF=AE=34+BE=(34+17)cm,在Rt△AFD中,∠FAD=45°,∴∠FDA=45°,∴DF=AF=EC=51cm,則CD=FC﹣FD=34+17﹣51=17﹣17,答:CD的長度為17﹣17cm.【點睛】本題主要考查了在直角三角形中三角函數(shù)的應用,解本題的要點在于求出FC與FD的長度,即可求出答案.24、詳見解析.【解析】試題分析:(1)根據(jù)定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度民辦學校圖書資源采購與借閱服務合同范本3篇
- 二零二五年度無線通信塔架建設施工合同
- 2025年臍橙果肥國際市場拓展合作合同4篇
- 2025年度二手房買賣合同稅務籌劃范本
- 二零二五年度土地承包經(jīng)營權租賃管理服務合同
- 二零二五年度文化藝術交流活動組織合同
- 二零二五年度天然青貯飼料原料采購與倉儲管理合同
- 二零二五年度品牌代理授權合同(含保密條款)
- 二零二五年度水塘生態(tài)環(huán)境保護與修復工程合同
- 二零二五版鋁單板裝飾材料采購合同4篇
- 2024年社區(qū)警務規(guī)范考試題庫
- 2024年食用牛脂項目可行性研究報告
- 2024年全國各地中考試題分類匯編(一):現(xiàn)代文閱讀含答案
- 2024-2030年中國戶外音箱行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 家務分工與責任保證書
- 消防安全隱患等級
- 溫室氣體(二氧化碳和甲烷)走航監(jiān)測技術規(guī)范
- 華為員工股權激勵方案
- 部編版一年級語文下冊第一單元大單元教學設計
- 《保單檢視專題》課件
評論
0/150
提交評論