版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2021-2022學(xué)年河南省信陽市平橋區(qū)明港鎮(zhèn)達(dá)標(biāo)名校中考四模數(shù)學(xué)試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是二次函數(shù)y=ax2+bx+c(a≠0)圖象如圖所示,則下列結(jié)論,①c<0,②2a+b=0;③a+b+c=0,④b2–4ac<0,其中正確的有()A.1個 B.2個 C.3個 D.42.如圖,直線AB、CD相交于點O,EO⊥CD,下列說法錯誤的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°3.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(
)A.30° B.35° C.40° D.50°4.計算(1-)÷的結(jié)果是()A.x-1 B. C. D.5.在1-7月份,某種水果的每斤進(jìn)價與出售價的信息如圖所示,則出售該種水果每斤利潤最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份6.下列計算,結(jié)果等于a4的是()A.a(chǎn)+3aB.a(chǎn)5﹣aC.(a2)2D.a(chǎn)8÷a27.已知圓心在原點O,半徑為5的⊙O,則點P(-3,4)與⊙O的位置關(guān)系是()A.在⊙O內(nèi)B.在⊙O上C.在⊙O外D.不能確定8.山西有著悠久的歷史,遠(yuǎn)在100多萬年前就有古人類生息在這塊土地上.春秋時期,山西大部分為晉國領(lǐng)地,故山西簡稱為“晉”,戰(zhàn)國初韓、趙、魏三分晉,山西又有“三晉”之稱,下面四個以“晉”字為原型的Logo圖案中,是軸對稱圖形的共有()A. B. C. D.9.如圖,下列條件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABCC.AB2=AD?AC D.10.下列四個圖形中,是中心對稱圖形但不是軸對稱圖形的是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知一個正多邊形的內(nèi)角和是外角和的3倍,那么這個正多邊形的每個內(nèi)角是_____度.12.如圖,四邊形ABCD中,AD=CD,∠B=2∠D=120°,∠C=75°.則=13.如圖,在中,.的半徑為2,點是邊上的動點,過點作的一條切線(點為切點),則線段長的最小值為______.14.分解因式:_______15.把直線y=-x+3向上平移m個單位后,與直線y=2x+4的交點在第一象限,則m的取值范圍是_________________.16.瑞士的一位中學(xué)教師巴爾末從光譜數(shù)據(jù),…中,成功地發(fā)現(xiàn)了其規(guī)律,從而得到了巴爾末公式,繼而打開了光譜奧妙的大門.請你根據(jù)這個規(guī)律寫出第9個數(shù)_____.三、解答題(共8題,共72分)17.(8分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當(dāng)他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.18.(8分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過A、B、C三點,已知點A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點P是直線AB上方的拋物線上一動點,(不與點A、B重合),過點P作x軸的垂線,垂足為F,交直線AB于點E,作PD⊥AB于點D.動點P在什么位置時,△PDE的周長最大,求出此時P點的坐標(biāo).19.(8分)拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.(1)求這條拋物線的表達(dá)式;(2)求∠ACB的度數(shù);(3)點D是拋物線上的一動點,是否存在點D,使得tan∠DCB=tan∠ACO.若存在,請求出點D的坐標(biāo),若不存在,說明理由.20.(8分)如圖所示,在△ABC中,BO、CO是角平分線.∠ABC=50°,∠ACB=60°,求∠BOC的度數(shù),并說明理由.題(1)中,如將“∠ABC=50°,∠ACB=60°”改為“∠A=70°”,求∠BOC的度數(shù).若∠A=n°,求∠BOC的度數(shù).21.(8分)現(xiàn)種植A、B、C三種樹苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一種樹苗,且每名工人每天可植A種樹苗8棵;或植B種樹苗6棵,或植C種樹苗5棵.經(jīng)過統(tǒng)計,在整個過程中,每棵樹苗的種植成本如圖所示.設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名.求y與x之間的函數(shù)關(guān)系式;設(shè)種植的總成本為w元,①求w與x之間的函數(shù)關(guān)系式;②若種植的總成本為5600元,從植樹工人中隨機采訪一名工人,求采訪到種植C種樹苗工人的概率.22.(10分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.
23.(12分)先化簡,后求值:,其中.24.如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當(dāng)點E在邊BC上時,求證DE=EB;(2)如圖2,當(dāng)點E在△ABC內(nèi)部時,猜想ED和EB數(shù)量關(guān)系,并加以證明;(1)如圖1,當(dāng)點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進(jìn)行推理,進(jìn)而對所得結(jié)論進(jìn)行判斷.【詳解】①拋物線與y軸交于負(fù)半軸,則c<1,故①正確;②對稱軸x1,則2a+b=1.故②正確;③由圖可知:當(dāng)x=1時,y=a+b+c<1.故③錯誤;④由圖可知:拋物線與x軸有兩個不同的交點,則b2﹣4ac>1.故④錯誤.綜上所述:正確的結(jié)論有2個.故選B.【點睛】本題考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,會利用對稱軸的值求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.2、C【解析】
根據(jù)對頂角性質(zhì)、鄰補角定義及垂線的定義逐一判斷可得.【詳解】A、∠AOD與∠BOC是對頂角,所以∠AOD=∠BOC,此選項正確;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此選項正確;C、∠AOC與∠BOD是對頂角,所以∠AOC=∠BOD,此選項錯誤;D、∠AOD與∠BOD是鄰補角,所以∠AOD+∠BOD=180°,此選項正確;故選C.【點睛】本題主要考查垂線、對頂角與鄰補角,解題的關(guān)鍵是掌握對頂角性質(zhì)、鄰補角定義及垂線的定義.3、C【解析】試題分析:已知m∥n,根據(jù)平行線的性質(zhì)可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質(zhì).4、B【解析】
先計算括號內(nèi)分式的加法、將除式分子因式分解,再將除法轉(zhuǎn)化為乘法,約分即可得.【詳解】解:原式=(-)÷=?=,故選B.【點睛】本題主要考查分式的混合運算,解題的關(guān)鍵是掌握分式混合運算順序和運算法則.5、B【解析】
解:各月每斤利潤:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利潤最大,故選B.6、C【解析】
根據(jù)同底數(shù)冪的除法法則:底數(shù)不變,指數(shù)相減;同底數(shù)冪的乘法法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加;冪的乘方法則:底數(shù)不變,指數(shù)相乘進(jìn)行計算即可.【詳解】A.a(chǎn)+3a=4a,錯誤;B.a(chǎn)5和a不是同類項,不能合并,故此選項錯誤;C.(a2)2=a4,正確;D.a(chǎn)8÷a2=a6,錯誤.故選C.【點睛】本題主要考查了同底數(shù)冪的乘除法,以及冪的乘方,關(guān)鍵是正確掌握計算法則.7、B.【解析】試題解析:∵OP=5,∴根據(jù)點到圓心的距離等于半徑,則知點在圓上.故選B.考點:1.點與圓的位置關(guān)系;2.坐標(biāo)與圖形性質(zhì).8、D【解析】
根據(jù)軸對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,故此選項錯誤;B、不是軸對稱圖形,故此選項錯誤;C、不是軸對稱圖形,故此選項錯誤;D、是軸對稱圖形,故此選項正確.
故選D.【點睛】此題主要考查了軸對稱圖形的概念,軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.9、D【解析】
根據(jù)有兩個角對應(yīng)相等的三角形相似,以及根據(jù)兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,分別判斷得出即可.【詳解】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此選項不合題意;C、∵AB2=AD?AC,∴,∠A=∠A,△ABC∽△ADB,故此選項不合題意;D、=不能判定△ADB∽△ABC,故此選項符合題意.故選D.【點睛】點評:本題考查了相似三角形的判定,利用了有兩個角對應(yīng)相等的三角形相似,兩邊對應(yīng)成比例且夾角相等的兩個三角形相似.10、D【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念判斷即可.【詳解】A、是軸對稱圖形,不是中心對稱圖形;B、是軸對稱圖形,不是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.【解析】
先由多邊形的內(nèi)角和和外角和的關(guān)系判斷出多邊形的邊數(shù),即可得到結(jié)論.【詳解】設(shè)多邊形的邊數(shù)為n.因為正多邊形內(nèi)角和為(n-2)?180°,正多邊形外角和為根據(jù)題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內(nèi)角是180°故答案為:1.【點睛】考查多邊形的內(nèi)角和與外角和,熟練掌握多邊形內(nèi)角和公式是解題的關(guān)鍵.12、【解析】
連接AC,過點C作CE⊥AB的延長線于點E,,如圖,先在Rt△BEC中根據(jù)含30度的直角三角形三邊的關(guān)系計算出BC、CE,判斷△AEC為等腰直角三角形,所以∠BAC=45°,AC=,利用即可求解.【詳解】連接AC,過點C作CE⊥AB的延長線于點E,∵∠ABC=2∠D=120°,∴∠D=60°,∵AD=CD,∴△ADC是等邊三角形,∵∠D+∠DAB+∠ABC+∠DCB=360°,∴∠ACB=∠DCB-∠DCA=75°-60°=15°,∠BAC=180°-∠ABC-∠ACB=180°-120°-15°=45°,∴AE=CE,∠EBC=45°+15°=60°,∴∠BCE=90°-60°=30°,設(shè)BE=x,則BC=2x,CE=,在RT△AEC中,AC=,∴,故答案為.【點睛】本題考查了解直角三角形:在直角三角形中,由已知元素求未知元素的過程就是解直角三角形.合理作輔助線是解題的關(guān)鍵.13、【解析】
連接,根據(jù)勾股定理知,可得當(dāng)時,即線段最短,然后由勾股定理即可求得答案.【詳解】連接.∵是的切線,∴;∴,∴當(dāng)時,線段OP最短,∴PQ的長最短,∵在中,,∴,∴,∴.故答案為:.【點睛】本題考查了切線的性質(zhì)、等腰直角三角形的性質(zhì)以及勾股定理.此題難度適中,注意掌握輔助線的作法,得到時,線段最短是關(guān)鍵.14、【解析】=2()=.故答案為.15、m>1【解析】試題分析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,求出直線y=-x+3+m與直線y=2x+4的交點,再由此點在第一象限可得出m的取值范圍.試題解析:直線y=-x+3向上平移m個單位后可得:y=-x+3+m,聯(lián)立兩直線解析式得:,解得:,即交點坐標(biāo)為(,),∵交點在第一象限,∴,解得:m>1.考點:一次函數(shù)圖象與幾何變換.16、.【解析】
分子的規(guī)律依次是:32,42,52,62,72,82,92…,分母的規(guī)律是:規(guī)律是:5+7=1212+9=2121+11=3232+13=45…,即分子為(n+2)2,分母為n(n+4).【詳解】解:由題可知規(guī)律,第9個數(shù)的分子是(9+2)2=121;第五個的分母是:32+13=45;第六個的分母是:45+15=60;第七個的分母是:60+17=77;第八個的分母是:77+19=96;則第九個的分母是:96+21=1.因而第九個數(shù)是:.故答案為:.【點睛】主要考查了學(xué)生的分析、總結(jié)、歸納能力,規(guī)律型的習(xí)題一般是從所給的數(shù)據(jù)和運算方法進(jìn)行分析,從特殊值的規(guī)律上總結(jié)出一般性的規(guī)律.三、解答題(共8題,共72分)17、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】
(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.18、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】
(1)將A(-1,0),B(0,1),C(1,0)三點的坐標(biāo)代入y=ax2+bx+c,運用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長越大,再運用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設(shè)P點的坐標(biāo)為(x,-x2-2x+1),E點的坐標(biāo)為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當(dāng)x=-時,PE最大,△PDE的周長也最大.將x=-代入-x2-2x+1,進(jìn)而得到P點的坐標(biāo).【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過點A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長越大.設(shè)直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設(shè)P點的坐標(biāo)為(x,﹣x2﹣2x+1),E點的坐標(biāo)為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當(dāng)x=﹣時,PE最大,△PDE的周長也最大.當(dāng)x=﹣時,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點P坐標(biāo)為(﹣,)時,△PDE的周長最大.【點睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識點有運用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長,綜合性較強,難度適中.19、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D點坐標(biāo)為(1,2)或(4,﹣25).【解析】
(1)設(shè)交點式y(tǒng)=a(x+1)(x﹣),展開得到﹣a=3,然后求出a即可得到拋物線解析式;(2)作AE⊥BC于E,如圖1,先確定C(0,3),再分別計算出AC=,BC=,接著利用面積法計算出AE=,然后根據(jù)三角函數(shù)的定義求出∠ACE即可;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n),證明Rt△BCH∽Rt△ACO,利用相似計算出BH=,CH=,再根據(jù)兩點間的距離公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接著通過解方程組得到H(,﹣)或(),然后求出直線CD的解析式,與二次函數(shù)聯(lián)立成方程組,解方程組即可.【詳解】(1)設(shè)拋物線解析式為y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴拋物線解析式為y=﹣2x2+x+3;(2)作AE⊥BC于E,如圖1,當(dāng)x=0時,y=﹣2x2+x+3=3,則C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==AE?BC=OC?AB,∴AE==.在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;(3)作BH⊥CD于H,如圖2,設(shè)H(m,n).∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①m2+(n﹣3)2=()2=,②②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.當(dāng)n=﹣時,m=2n+=,此時H(,﹣),易得直線CD的解析式為y=﹣7x+3,解方程組得:或,此時D點坐標(biāo)為(4,﹣25);當(dāng)n=時,m=2n+=,此時H(),易得直線CD的解析式為y=﹣x+3,解方程組得:或,此時D點坐標(biāo)為(1,2).綜上所述:D點坐標(biāo)為(1,2)或(4,﹣25).【點睛】本題是二次函數(shù)綜合題.熟練掌握二次函數(shù)圖象上點的坐標(biāo)特征、二次函數(shù)的性質(zhì)和相似三角形的判定的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,把求兩函數(shù)交點問題轉(zhuǎn)化為解方程組的問題;理解坐標(biāo)與圖形性質(zhì);會運用分類討論的思想解決數(shù)學(xué)問題.20、(1)125°;(2)125°;(3)∠BOC=90°+n°.【解析】
如圖,由BO、CO是角平分線得∠ABC=2∠1,∠ACB=2∠2,再利用三角形內(nèi)角和得到∠ABC+∠ACB+∠A=180°,則2∠1+2∠2+∠A=180°,接著再根據(jù)三角形內(nèi)角和得到∠1+∠2+∠BOC=180°,利用等式的性質(zhì)進(jìn)行變換可得∠BOC=90°+∠A,然后根據(jù)此結(jié)論分別解決(1)、(2)、(3).【詳解】如圖,∵BO、CO是角平分線,∴∠ABC=2∠1,∠ACB=2∠2,∵∠ABC+∠ACB+∠A=180°,∴2∠1+2∠2+∠A=180°,∵∠1+∠2+∠BOC=180°,∴2∠1+2∠2+2∠BOC=360°,∴2∠BOC﹣∠A=180°,∴∠BOC=90°+∠A,(1)∵∠ABC=50°,∠ACB=60°,∴∠A=180°﹣50°﹣60°=70°,∴∠BOC=90°+×70°=125°;(2)∠BOC=90°+∠A=125°;(3)∠BOC=90°+n°.【點睛】本題考查了三角形內(nèi)角和定理:三角形內(nèi)角和是180°.主要用在求三角形中角的度數(shù):①直接根據(jù)兩已知角求第三個角;②依據(jù)三角形中角的關(guān)系,用代數(shù)方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.21、(1);(2)①;②【解析】
(1)先求出種植C種樹苗的人數(shù),根據(jù)現(xiàn)種植A、B、C三種樹苗一共480棵,可以列出等量關(guān)系,解出y與x之間的關(guān)系;(2)①分別求出種植A,B,C三種樹苗的成本,然后相加即可;②求出種植C種樹苗工人的人數(shù),然后用種植C種樹苗工人的人數(shù)÷總?cè)藬?shù)即可求出概率.【詳解】解:(1)設(shè)種植A種樹苗的工人為x名,種植B種樹苗的工人為y名,則種植C種樹苗的人數(shù)為(80-x-y)人,根據(jù)題意,得:8x+6y+5(80-x-y)=480,整理,得:y=-3x+80;(2)①w=15×8x+12×6y+8×5(80-x-y)=80x+32y+3200,把y=-3x+80代入,得:w=-16x+5760,②種植的總成本為5600元時,w=-16x+5760=5600,解得x=10,y=-3×10+80=50,即種植A種樹苗的工人為10名,種植B種樹苗的工人為50名,種植B種樹苗的工人為:80-10-50=20名.采訪到種植C種樹苗工人的概率為:=.【點睛】本題主要考查了一次函數(shù)的實際問題,以及概率的求法,能夠?qū)嶋H問題轉(zhuǎn)化成數(shù)學(xué)模型是解答此題的關(guān)鍵.22、(2)1【解析】試題分析:(1)連結(jié)OC,由=,根據(jù)圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以O(shè)C⊥CD,然后根據(jù)切線的判定定理得到CD是⊙O的切線;(2)連結(jié)BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關(guān)系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關(guān)系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結(jié)OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度差旅服務(wù)與智能出行平臺合作協(xié)議4篇
- 專業(yè)化國內(nèi)物流服務(wù)運輸協(xié)議范本(2024版)一
- 2025年度建筑工程測量監(jiān)理合同協(xié)議4篇
- 2024新三板掛牌協(xié)議及證券事務(wù)顧問服務(wù)合同3篇
- 2024藍(lán)皮合同下載
- 2025年度柴油運輸企業(yè)環(huán)保設(shè)施建設(shè)合同4篇
- 2025年度環(huán)保環(huán)保設(shè)備銷售與售后服務(wù)合同4篇
- 2025年度柴油生產(chǎn)技術(shù)改造項目合同范本4篇
- 個人房產(chǎn)買賣合同書稿版B版
- 2024投資擔(dān)保借款保證合同范本
- 產(chǎn)品共同研發(fā)合作協(xié)議范本5篇
- 風(fēng)水學(xué)的基礎(chǔ)知識培訓(xùn)
- 吸入療法在呼吸康復(fù)應(yīng)用中的中國專家共識2022版
- 1-35kV電纜技術(shù)參數(shù)表
- 信息科技課程標(biāo)準(zhǔn)測(2022版)考試題庫及答案
- 施工組織設(shè)計方案針對性、完整性
- 2002版干部履歷表(貴州省)
- DL∕T 1909-2018 -48V電力通信直流電源系統(tǒng)技術(shù)規(guī)范
- 2024年服裝制版師(高級)職業(yè)鑒定考試復(fù)習(xí)題庫(含答案)
- 門診部縮短就診等候時間PDCA案例-課件
評論
0/150
提交評論