2024屆廣西柳州市中考聯(lián)考數(shù)學試題含解析_第1頁
2024屆廣西柳州市中考聯(lián)考數(shù)學試題含解析_第2頁
2024屆廣西柳州市中考聯(lián)考數(shù)學試題含解析_第3頁
2024屆廣西柳州市中考聯(lián)考數(shù)學試題含解析_第4頁
2024屆廣西柳州市中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆廣西柳州市中考聯(lián)考數(shù)學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在直角坐標系中,直線與坐標軸交于A、B兩點,與雙曲線()交于點C,過點C作CD⊥x軸,垂足為D,且OA=AD,則以下結論:①;②當0<x<3時,;③如圖,當x=3時,EF=;④當x>0時,隨x的增大而增大,隨x的增大而減?。渲姓_結論的個數(shù)是()A.1 B.2 C.3 D.42.如圖,O為直線AB上一點,OE平分∠BOC,OD⊥OE于點O,若∠BOC=80°,則∠AOD的度數(shù)是()A.70° B.50° C.40° D.35°3.化簡的結果是()A.±4 B.4 C.2 D.±24.計算-4-|-3|的結果是()A.-1B.-5C.1D.55.如果關于x的分式方程有負分數(shù)解,且關于x的不等式組的解集為x<-2,那么符合條件的所有整數(shù)a的積是()A.-3 B.0 C.3 D.96.濟南市某天的氣溫:-5~8℃,則當天最高與最低的溫差為()A.13 B.3 C.-13 D.-37.如果,那么代數(shù)式的值為()A.1 B.2 C.3 D.48.如圖,四邊形ABCD中,AC⊥BC,AD∥BC,BC=3,AC=4,AD=1.M是BD的中點,則CM的長為()A. B.2 C. D.39.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm10.在武漢市舉辦的“讀好書、講禮儀”活動中,某學校積極行動,各班圖書角的新書、好書不斷增多,除學校購買外,還有師生捐獻的圖書.下面是七年級(1)班全體同學捐獻圖書的情況統(tǒng)計圖,根據圖中信息,該班平均每人捐書的冊數(shù)是()A.3B.3.2C.4D.4.5二、填空題(本大題共6個小題,每小題3分,共18分)11.小青在八年級上學期的數(shù)學成績如下表所示.平時測驗期中考試期末考試成績869081如果學期總評成績根據如圖所示的權重計算,小青該學期的總評成績是_____分.12.計算:(a2)2=_____.13.已知△ABC∽△DEF,若△ABC與△DEF的相似比為,則△ABC與△DEF對應中線的比為_____.14.某招聘考試分筆試和面試兩種,其中筆試按60%、面試按40%計算加權平均數(shù),作為總成績.孔明筆試成績90分,面試成績85分,那么孔明的總成績是分.15.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.16.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是_______.三、解答題(共8題,共72分)17.(8分)對x,y定義一種新運算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運算.如:T(3,1)=,T(m,﹣2)=.填空:T(4,﹣1)=(用含a,b的代數(shù)式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a與b的值;②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.18.(8分)近日,深圳市人民政府發(fā)布了《深圳市可持續(xù)發(fā)展規(guī)劃》,提出了要做可持續(xù)發(fā)展的全球創(chuàng)新城市的目標,某初中學校了解學生的創(chuàng)新意識,組織了全校學生參加創(chuàng)新能力大賽,從中抽取了部分學生成績,分為5組:A組50~60;B組60~70;C組70~80;D組80~90;E組90~100,統(tǒng)計后得到如圖所示的頻數(shù)分布直方圖(每組含最小值不含最大值)和扇形統(tǒng)計圖.抽取學生的總人數(shù)是人,扇形C的圓心角是°;補全頻數(shù)直方圖;該校共有2200名學生,若成績在70分以下(不含70分)的學生創(chuàng)新意識不強,有待進一步培養(yǎng),則該校創(chuàng)新意識不強的學生約有多少人?19.(8分)小王是“新星廠”的一名工人,請你閱讀下列信息:信息一:工人工作時間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產甲、乙兩種產品的件數(shù)與所用時間的關系見下表:生產甲產品數(shù)(件)生產乙產品數(shù)(件)所用時間(分鐘)10103503020850信息三:按件計酬,每生產一件甲種產品得1.50元,每生產一件乙種產品得2.80元.信息四:該廠工人每月收入由底薪和計酬工資兩部分構成,小王每月的底薪為1900元,請根據以上信息,解答下列問題:(1)小王每生產一件甲種產品,每生產一件乙種產品分別需要多少分鐘;(2)2018年1月工廠要求小王生產甲種產品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時小王生產的甲、乙兩種產品分別是多少件?20.(8分)小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.21.(8分)小明對,,,四個中小型超市的女工人數(shù)進行了統(tǒng)計,并繪制了下面的統(tǒng)計圖表,已知超市有女工20人.所有超市女工占比統(tǒng)計表超市女工人數(shù)占比62.5%62.5%50%75%超市共有員工多少人?超市有女工多少人?若從這些女工中隨機選出一個,求正好是超市的概率;現(xiàn)在超市又招進男、女員工各1人,超市女工占比還是75%嗎?甲同學認為是,乙同學認為不是.你認為誰說的對,并說明理由.22.(10分)講授“軸對稱”時,八年級教師設計了如下:四種教學方法:①教師講,學生聽②教師讓學生自己做③教師引導學生畫圖發(fā)現(xiàn)規(guī)律④教師讓學生對折紙,觀察發(fā)現(xiàn)規(guī)律,然后畫圖為調查教學效果,八年級教師將上述教學方法作為調研內容發(fā)到全年級8個班420名同學手中,要求每位同學選出自己最喜歡的一種.他隨機抽取了60名學生的調查問卷,統(tǒng)計如圖(1)請將條形統(tǒng)計圖補充完整;(2)計算扇形統(tǒng)計圖中方法③的圓心角的度數(shù)是;(3)八年級同學中最喜歡的教學方法是哪一種?選擇這種教學方法的約有多少人?23.(12分)如圖,某大樓的頂部豎有一塊廣告牌CD,小李在山坡的坡腳A處測得廣告牌底部D的仰角為60°沿坡面AB向上走到B處測得廣告牌頂部C的仰角為45°,已知山坡AB的傾斜角∠BAH=30°,AB=20米,AB=30米.(1)求點B距水平面AE的高度BH;(2)求廣告牌CD的高度.24.(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題分析:對于直線,令x=0,得到y(tǒng)=2;令y=0,得到x=1,∴A(1,0),B(0,﹣2),即OA=1,OB=2,在△OBA和△CDA中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC,OA=AD,∴△OBA≌△CDA(AAS),∴CD=OB=2,OA=AD=1,∴(同底等高三角形面積相等),選項①正確;∴C(2,2),把C坐標代入反比例解析式得:k=4,即,由函數(shù)圖象得:當0<x<2時,,選項②錯誤;當x=3時,,,即EF==,選項③正確;當x>0時,隨x的增大而增大,隨x的增大而減小,選項④正確,故選C.考點:反比例函數(shù)與一次函數(shù)的交點問題.2、B【解析】分析:由OE是∠BOC的平分線得∠COE=40°,由OD⊥OE得∠DOC=50°,從而可求出∠AOD的度數(shù).詳解:∵OE是∠BOC的平分線,∠BOC=80°,∴∠COE=∠BOC=×80°=40°,∵OD⊥OE∴∠DOE=90°,∴∠DOC=∠DOE-∠COE=90°-40°=50°,∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.故選B.點睛:本題考查了角平分線的定義:從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.性質:若OC是∠AOB的平分線則∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.3、B【解析】

根據算術平方根的意義求解即可.【詳解】4,故選:B.【點睛】本題考查了算術平方根的意義,一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術平方根,正數(shù)a有一個正的算術平方根,0的算術平方根是0,負數(shù)沒有算術平方根.4、B【解析】

原式利用算術平方根定義,以及絕對值的代數(shù)意義計算即可求出值.【詳解】原式=-2-3=-5,故選:B.【點睛】此題考查了實數(shù)的運算,熟練掌握運算法則是解本題的關鍵.5、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式組的解集為x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合題意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合題意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合題意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合題意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合題意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合題意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合題意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合題意,∴符合條件的整數(shù)a取值為﹣3;﹣1;1;3,之積為1.故選D.6、A【解析】由題意可知,當天最高溫與最低溫的溫差為8-(-5)=13℃,故選A.7、A【解析】

先計算括號內分式的減法,再將除法轉化為乘法,最后約分即可化簡原式,繼而將3x=4y代入即可得.【詳解】解:∵原式===∵3x-4y=0,∴3x=4y原式==1故選:A.【點睛】本題主要考查分式的化簡求值,解題的關鍵是熟練掌握分式的混合運算順序和運算法則.8、C【解析】

延長BC到E使BE=AD,利用中點的性質得到CM=DE=AB,再利用勾股定理進行計算即可解答.【詳解】解:延長BC到E使BE=AD,∵BC//AD,∴四邊形ACED是平行四邊形,∴DE=AB,∵BC=3,AD=1,∴C是BE的中點,∵M是BD的中點,∴CM=DE=AB,∵AC⊥BC,∴AB==,∴CM=,故選:C.【點睛】此題考查平行四邊形的性質,勾股定理,解題關鍵在于作輔助線.9、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.10、B【解析】七年級(1)班捐獻圖書的同學人數(shù)為9÷18%=50人,捐獻4冊的人數(shù)為50×30%=15人,捐獻3冊的人數(shù)為50-6-9-15-8=12人,所以該班平均每人捐書的冊數(shù)為(6+9×2+12×3+15×4+8×5)÷50=3.2冊,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、84.2【解析】小青該學期的總評成績?yōu)?86×10%+90×30%+81×60%=84.2(分),故答案為:84.2.12、a1.【解析】

根據冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關鍵.13、3:4【解析】由于相似三角形的相似比等于對應中線的比,∴△ABC與△DEF對應中線的比為3:4故答案為3:4.14、88【解析】試題分析:根據筆試和面試所占的百分比以及筆試成績和面試成績,列出算式,進行計算即可:∵筆試按60%、面試按40%計算,∴總成績是:90×60%+85×40%=88(分).15、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質;3等腰三角形.16、【解析】

首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:

∵共有12種等可能的結果,兩次都摸到白球的有2種情況,

∴兩次都摸到白球的概率是:=.

故答案為:.【點睛】本題考查用樹狀圖法求概率,解題的關鍵是掌握用樹狀圖法求概率.三、解答題(共8題,共72分)17、(1);(2)①a=1,b=-1,②m=2.【解析】

(1)根據題目中的新運算法則計算即可;(2)①根據題意列出方程組即可求出a,b的值;②先分別算出T(3m﹣3,m)與T(m,3m﹣3)的值,再根據求出的值列出等式即可得出結論.【詳解】解:(1)T(4,﹣1)==;故答案為;(2)①∵T(﹣2,0)=﹣2且T(2,﹣1)=1,∴解得②解法一:∵a=1,b=﹣1,且x+y≠0,∴T(x,y)===x﹣y.∴T(3m﹣3,m)=3m﹣3﹣m=2m﹣3,T(m,3m﹣3)=m﹣3m+3=﹣2m+3.∵T(3m﹣3,m)=T(m,3m﹣3),∴2m﹣3=﹣2m+3,解得,m=2.解法二:由解法①可得T(x,y)=x﹣y,當T(x,y)=T(y,x)時,x﹣y=y﹣x,∴x=y.∵T(3m﹣3,m)=T(m,3m﹣3),∴3m﹣3=m,∴m=2.【點睛】本題關鍵是能夠把新運算轉化為我們學過的知識,并應用一元一次方程或二元一次方程進行解題..18、(1)300、144;(2)補全頻數(shù)分布直方圖見解析;(3)該校創(chuàng)新意識不強的學生約有528人.【解析】

(1)由D組頻數(shù)及其所占比例可得總人數(shù),用360°乘以C組人數(shù)所占比例可得;

(2)用總人數(shù)分別乘以A、B組的百分比求得其人數(shù),再用總人數(shù)減去A、B、C、D的人數(shù)求得E組的人數(shù)可得;

(3)用總人數(shù)乘以樣本中A、B組的百分比之和可得.【詳解】解:(1)抽取學生的總人數(shù)為78÷26%=300人,扇形C的圓心角是360°×=144°,故答案為300、144;(2)A組人數(shù)為300×7%=21人,B組人數(shù)為300×17%=51人,則E組人數(shù)為300﹣(21+51+120+78)=30人,補全頻數(shù)分布直方圖如下:(3)該校創(chuàng)新意識不強的學生約有2200×(7%+17%)=528人.【點睛】考查了頻數(shù)(率)分布直方圖:提高讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力.利用統(tǒng)計圖獲取信息時,必須認真觀察、分析、研究統(tǒng)計圖,才能作出正確的判斷和解決問題.也考查了用樣本估計總體.19、(1)生產一件甲產品需要15分,生產一件乙產品需要20分;(2)小王該月最多能得3544元,此時生產甲、乙兩種產品分別60,555件.【解析】

(1)設生產一件甲種產品需x分,生產一件乙種產品需y分,利用待定系數(shù)法求出x,y的值.

(2)設生產甲種產品用x分,則生產乙種產品用(25×8×60-x)分,分別求出甲乙兩種生產多少件產品.【詳解】(1)設生產一件甲種產品需x分,生產一件乙種產品需y分.由題意得:,解這個方程組得:,答:生產一件甲產品需要15分,生產一件乙產品需要20分.(2)設生產甲種產品共用x分,則生產乙種產品用(25×8×60-x)分.則生產甲種產品件,生產乙種產品件.∴w總額=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,又≥60,得x≥900,由一次函數(shù)的增減性,當x=900時w取得最大值,此時w=0.04×900+1680=1644(元),則小王該月收入最多是1644+1900=3544(元),此時甲有=60(件),乙有:=555(件),答:小王該月最多能得3544元,此時生產甲、乙兩種產品分別60,555件.【點睛】考查了一次函數(shù)和二元一次方程組的應用.解題關鍵是要讀懂題目的意思,根據題目給出的條件,找出合適的等量關系,列出方程組,再求解.20、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據題意畫出樹狀圖,然后根據概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關,正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.21、(1)32(人),25(人);(2);(3)乙同學,見解析.【解析】

(1)用A超市有女工人數(shù)除以女工人數(shù)占比,可求A超市共有員工多少人;先求出D超市女工所占圓心角度數(shù),進一步得到四個中小型超市的女工人數(shù)比,從而求得B超市有女工多少人;

(2)先求出C超市有女工人數(shù),進一步得到四個中小型超市共有女工人數(shù),再根據概率的定義即可求解;

(3)先求出D超市有女工人數(shù)、共有員工多少人,再得到D超市又招進男、女員工各1人,D超市有女工人數(shù)、共有員工多少人,再根據概率的定義即可求解.【詳解】解:(1)A超市共有員工:20÷62.5%=32(人),∵360°-80°-100°-120°=60°,∴四個超市女工人數(shù)的比為:80:100:120:60=4:5:6:3,∴B超市有女工:20×=25(人);(2)C超市有女工:20×=30(人).四個超市共有女工:20×=90(人).從這些女工中隨機選出一個,正好是C超市的概率為=.(3)乙同學.理由:D超市有女工20×=15(人),共有員工15÷75%=20(人),再招進男、女員工各1人,共有員工22人,其中女工是16人,女工占比為=≠75%.【點睛】本題考查了統(tǒng)計表與扇形統(tǒng)計圖的綜合,以及概率的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、解:(1)見解析;(2)108°;(3)最喜歡方法④,約有189人.【解析】

(1)由題意可知:喜歡方法②的學生有60-6-18-27=9(人);(2)求方法③的圓心角應先求所占比值,再乘以360°;(3)根據條形的高低可判斷喜歡方法④的學生最多,人數(shù)應該等于總人數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論