2022屆廣東省華師附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第1頁
2022屆廣東省華師附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第2頁
2022屆廣東省華師附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第3頁
2022屆廣東省華師附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第4頁
2022屆廣東省華師附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022屆廣東省華師附中畢業(yè)升學(xué)考試模擬卷數(shù)學(xué)卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>22.為了解某社區(qū)居民的用電情況,隨機(jī)對該社區(qū)10戶居民進(jìn)行調(diào)查,下表是這10戶居民2015年4月份用電量的調(diào)查結(jié)果:居民(戶)1234月用電量(度/戶)30425051那么關(guān)于這10戶居民月用電量(單位:度),下列說法錯誤的是()A.中位數(shù)是50 B.眾數(shù)是51 C.方差是42 D.極差是213.如圖,將△ABC繞點(diǎn)C(0,-1)旋轉(zhuǎn)180°得到△A′B′C,設(shè)點(diǎn)A的坐標(biāo)為(a,b),則點(diǎn)A′的坐標(biāo)為()A.(-a,-b) B.(-a,-b-1) C.(-a,-b+1) D.(-a,-b-2)4.如圖所示,在平面直角坐標(biāo)系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點(diǎn)B順時(shí)針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2017次后,得到的等腰直角三角形的直角頂點(diǎn)P2018的坐標(biāo)為()A.(4030,1) B.(4029,﹣1)C.(4033,1) D.(4035,﹣1)5.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點(diǎn)B為圓心,BA為半徑的圓弧與BC交于點(diǎn)E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.36.二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù))中的x與y的部分對應(yīng)值如表所示:x-1013y33下列結(jié)論:(1)abc<0(2)當(dāng)x>1時(shí),y的值隨x值的增大而減?。唬?)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數(shù)為()A.4個 B.3個 C.2個 D.1個7.如圖,甲從A點(diǎn)出發(fā)向北偏東70°方向走到點(diǎn)B,乙從點(diǎn)A出發(fā)向南偏西15°方向走到點(diǎn)C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°8.如圖,△ABC內(nèi)接于⊙O,BC為直徑,AB=8,AC=6,D是弧AB的中點(diǎn),CD與AB的交點(diǎn)為E,則CE:DE等于()A.3:1 B.4:1 C.5:2 D.7:29.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們?yōu)槊缙缘闹睆剑褹B⊥CD.入口K位于中點(diǎn),園丁在苗圃圓周或兩條交叉過道上勻速行進(jìn).設(shè)該園丁行進(jìn)的時(shí)間為x,與入口K的距離為y,表示y與x的函數(shù)關(guān)系的圖象大致如圖2所示,則該園丁行進(jìn)的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C10.如圖,已知⊙O的半徑為5,AB是⊙O的弦,AB=8,Q為AB中點(diǎn),P是圓上的一點(diǎn)(不與A、B重合),連接PQ,則PQ的最小值為()A.1 B.2 C.3 D.8二、填空題(本大題共6個小題,每小題3分,共18分)11.把16a3﹣ab2因式分解_____.12.如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線段OA上任意一點(diǎn)(不含端點(diǎn)O、A),過P、O兩點(diǎn)的二次函數(shù)y1和過P、A兩點(diǎn)的二次函數(shù)y2的圖象開口均向下,它們的頂點(diǎn)分別為B、C,射線OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個二次函數(shù)的最大值之和等于______.13.如圖所示,一動點(diǎn)從半徑為2的⊙O上的A0點(diǎn)出發(fā),沿著射線A0O方向運(yùn)動到⊙O上的點(diǎn)A1處,再向左沿著與射線A1O夾角為60°的方向運(yùn)動到⊙O上的點(diǎn)A2處;接著又從A2點(diǎn)出發(fā),沿著射線A2O方向運(yùn)動到⊙O上的點(diǎn)A3處,再向左沿著與射線A3O夾角為60°的方向運(yùn)動到⊙O上的點(diǎn)A4處;A4A0間的距離是_____;…按此規(guī)律運(yùn)動到點(diǎn)A2019處,則點(diǎn)A2019與點(diǎn)A0間的距離是_____.14.如圖,以點(diǎn)為圓心的兩個同心圓中,大圓的弦是小圓的切線,點(diǎn)是切點(diǎn),則劣弧AB的長為.(結(jié)果保留)15.半徑為2的圓中,60°的圓心角所對的弧的弧長為_____.16.不等式組的解集是_____________.三、解答題(共8題,共72分)17.(8分)先化簡,再求值:(x﹣2﹣)÷,其中x=.18.(8分)已知:如圖,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)D、E分別是邊AB、BC的中點(diǎn),點(diǎn)F、G是邊AC的三等分點(diǎn),DF、EG的延長線相交于點(diǎn)H,連接HA、HC.(1)求證:四邊形FBGH是菱形;(2)求證:四邊形ABCH是正方形.19.(8分)向陽中學(xué)校園內(nèi)有一條林萌道叫“勤學(xué)路”,道路兩邊有如圖所示的路燈(在鉛垂面內(nèi)的示意圖),燈柱BC的高為10米,燈柱BC與燈桿AB的夾角為120°.路燈采用錐形燈罩,在地面上的照射區(qū)域DE的長為13.3米,從D、E兩處測得路燈A的仰角分別為α和45°,且tanα=1.求燈桿AB的長度.20.(8分)如圖,二次函數(shù)的圖像與軸交于、兩點(diǎn),與軸交于點(diǎn),.點(diǎn)在函數(shù)圖像上,軸,且,直線是拋物線的對稱軸,是拋物線的頂點(diǎn).求、的值;如圖①,連接,線段上的點(diǎn)關(guān)于直線的對稱點(diǎn)恰好在線段上,求點(diǎn)的坐標(biāo);如圖②,動點(diǎn)在線段上,過點(diǎn)作軸的垂線分別與交于點(diǎn),與拋物線交于點(diǎn).試問:拋物線上是否存在點(diǎn),使得與的面積相等,且線段的長度最小?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.21.(8分)如圖,拋物線y=ax2+bx+c(a>0)的頂點(diǎn)為M,直線y=m與拋物線交于點(diǎn)A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點(diǎn)之間的部分與線段AB圍成的圖形稱為該拋物線對應(yīng)的準(zhǔn)蝶形,線段AB稱為碟寬,頂點(diǎn)M稱為碟頂.(1)由定義知,取AB中點(diǎn)N,連結(jié)MN,MN與AB的關(guān)系是_____.(2)拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),則m=_____,對應(yīng)的碟寬AB是_____.(3)拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.①求拋物線的解析式;②在此拋物線的對稱軸上是否有這樣的點(diǎn)P(xp,yp),使得∠APB為銳角,若有,請求出yp的取值范圍.若沒有,請說明理由.22.(10分)如圖,在四邊形中,為一條對角線,,,.為的中點(diǎn),連結(jié).(1)求證:四邊形為菱形;(2)連結(jié),若平分,,求的長.23.(12分)小明在熱氣球A上看到正前方橫跨河流兩岸的大橋BC,并測得B、C兩點(diǎn)的俯角分別為45°、35°.已知大橋BC與地面在同一水平面上,其長度為100m,求熱氣球離地面的高度.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin35°=0.57,cos35°=0.82,tan35°=0.70)24.如圖,在正方形ABCD的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M,則圖中≌,可知,求得______.如圖,在矩形的外側(cè),作兩個等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M.求證:.若,求的度數(shù).

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

先求出每個不等式的解集,再根據(jù)不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因?yàn)椴坏仁浇M無解,所以m≤1.故選A.【點(diǎn)睛】此題的實(shí)質(zhì)是考查不等式組的求法,求不等式組的解集,要根據(jù)以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.2、C【解析】試題解析:10戶居民2015年4月份用電量為30,42,42,50,50,50,51,51,51,51,平均數(shù)為(30+42+42+50+50+50+51+51+51+51)=46.8,中位數(shù)為50;眾數(shù)為51,極差為51-30=21,方差為[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故選C.考點(diǎn):1.方差;2.中位數(shù);3.眾數(shù);4.極差.3、D【解析】

設(shè)點(diǎn)A的坐標(biāo)是(x,y),根據(jù)旋轉(zhuǎn)變換的對應(yīng)點(diǎn)關(guān)于旋轉(zhuǎn)中心對稱,再根據(jù)中點(diǎn)公式列式求解即可.【詳解】根據(jù)題意,點(diǎn)A、A′關(guān)于點(diǎn)C對稱,

設(shè)點(diǎn)A的坐標(biāo)是(x,y),

=0,

=-1,

解得x=-a,y=-b-2,

∴點(diǎn)A的坐標(biāo)是(-a,-b-2).

故選D.【點(diǎn)睛】本題考查了利用旋轉(zhuǎn)進(jìn)行坐標(biāo)與圖形的變化,根據(jù)旋轉(zhuǎn)的性質(zhì)得出點(diǎn)A、A′關(guān)于點(diǎn)C成中心對稱是解題的關(guān)鍵4、D【解析】

根據(jù)題意可以求得P1,點(diǎn)P2,點(diǎn)P3的坐標(biāo),從而可以發(fā)現(xiàn)其中的變化的規(guī)律,從而可以求得P2018的坐標(biāo),本題得以解決.【詳解】解:由題意可得,

點(diǎn)P1(1,1),點(diǎn)P2(3,-1),點(diǎn)P3(5,1),

∴P2018的橫坐標(biāo)為:2×2018-1=4035,縱坐標(biāo)為:-1,

即P2018的坐標(biāo)為(4035,-1),

故選:D.【點(diǎn)睛】本題考查了點(diǎn)的坐標(biāo)變化規(guī)律,解答本題的關(guān)鍵是發(fā)現(xiàn)各點(diǎn)的變化規(guī)律,求出相應(yīng)的點(diǎn)的坐標(biāo).5、B【解析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.6、B【解析】

(1)利用待定系數(shù)法求出二次函數(shù)解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結(jié)論錯誤;(3)由當(dāng)x=4和x=-1時(shí)對應(yīng)的函數(shù)值相同,即可判定結(jié)論正確;(4)當(dāng)x=3時(shí),二次函數(shù)y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時(shí)y=-,x=0時(shí),y=3,x=1時(shí),y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當(dāng)x>時(shí),y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當(dāng)x=4和x=-1時(shí)對應(yīng)的函數(shù)值相同,∴16a+4b+c<0,故正確;(4)當(dāng)x=3時(shí),二次函數(shù)y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結(jié)論正確的是(1)(3)(4).故選:B.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),主要利用了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)的增減性,二次函數(shù)與不等式,根據(jù)表中數(shù)據(jù)求出二次函數(shù)解析式是解題的關(guān)鍵.7、C【解析】

首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點(diǎn)睛】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.8、A【解析】

利用垂徑定理的推論得出DO⊥AB,AF=BF,進(jìn)而得出DF的長和△DEF∽△CEA,再利用相似三角形的性質(zhì)求出即可.【詳解】連接DO,交AB于點(diǎn)F,∵D是的中點(diǎn),∴DO⊥AB,AF=BF,∵AB=8,∴AF=BF=4,∴FO是△ABC的中位線,AC∥DO,∵BC為直徑,AB=8,AC=6,∴BC=10,F(xiàn)O=AC=1,∴DO=5,∴DF=5-1=2,∵AC∥DO,∴△DEF∽△CEA,∴,∴==1.故選:A.【點(diǎn)睛】此題主要考查了垂徑定理的推論以及相似三角形的判定與性質(zhì),根據(jù)已知得出△DEF∽△CEA是解題關(guān)鍵.9、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據(jù)此逐項(xiàng)進(jìn)行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點(diǎn)睛】本題考查了動點(diǎn)問題的函數(shù)圖象,看懂圖形,認(rèn)真分析是解題的關(guān)鍵.10、B【解析】

連接OP、OA,根據(jù)垂徑定理求出AQ,根據(jù)勾股定理求出OQ,計(jì)算即可.【詳解】解:由題意得,當(dāng)點(diǎn)P為劣弧AB的中點(diǎn)時(shí),PQ最小,

連接OP、OA,由垂徑定理得,點(diǎn)Q在OP上,AQ=AB=4,在Rt△AOB中,OQ==3,∴PQ=OP-OQ=2,故選:B.【點(diǎn)睛】本題考查的是垂徑定理、勾股定理,掌握垂徑定理的推論是解題的關(guān)鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、a(4a+b)(4a﹣b)【解析】

首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】解:16a3-ab2=a(16a2-b2)=a(4a+b)(4a-b).故答案為:a(4a+b)(4a-b).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確應(yīng)用公式是解題關(guān)鍵.12、【解析】

此題考查了二次函數(shù)的最值,勾股定理,等腰三角形的性質(zhì)和判定的應(yīng)用,題目比較好,但是有一定的難度,屬于綜合性試題.【詳解】過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,則BF+CM是這兩個二次函數(shù)的最大值之和,BF∥DE∥CM,求出AE=OE=2,DE=,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,推出△OBF∽△ODE,△ACM∽△ADE,得出=,代入求出BF和CM,相加即可求出答案.過B作BF⊥OA于F,過D作DE⊥OA于E,過C作CM⊥OA于M,∵BF⊥OA,DE⊥OA,CM⊥OA,∴BF∥DE∥CM.∵OD=AD=3,DE⊥OA,∴OE=EA=OA=2,由勾股定理得:DE==5,設(shè)P(2x,0),根據(jù)二次函數(shù)的對稱性得出OF=PF=x,∵BF∥DE∥CM,∴△OBF∽△ODE,△ACM∽△ADE,∴,∵AM=PM=(OA-OP)=(4-2x)=2-x,即,解得:∴BF+CM=.故答案為.【點(diǎn)睛】考核知識點(diǎn):二次函數(shù)綜合題.熟記性質(zhì),數(shù)形結(jié)合是關(guān)鍵.13、1.【解析】

據(jù)題意求得A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…于是得到A1019與A3重合,即可得到結(jié)論.【詳解】解:如圖,∵⊙O的半徑=1,由題意得,A0A1=4,A0A1=,A0A3=1,A0A4=,A0A5=1,A0A6=0,A0A7=4,…∵1019÷6=336…3,∴按此規(guī)律A1019與A3重合,∴A0A1019=A0A3=1,故答案為,1.【點(diǎn)睛】本題考查了圖形的變化類,等邊三角形的性質(zhì),解直角三角形,正確的作出圖形是解題的關(guān)鍵.14、8π.【解析】試題分析:因?yàn)锳B為切線,P為切點(diǎn),劣弧AB所對圓心角考點(diǎn):勾股定理;垂徑定理;弧長公式.15、【解析】根據(jù)弧長公式可得:=,故答案為.16、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.三、解答題(共8題,共72分)17、【解析】

根據(jù)分式的運(yùn)算法則即可求出答案.【詳解】原式,,.當(dāng)時(shí),原式【點(diǎn)睛】本題考查的知識點(diǎn)是分式的化簡求值,解題關(guān)鍵是化簡成最簡再代入計(jì)算.18、(1)見解析(2)見解析【解析】

(1)由三角形中位線知識可得DF∥BG,GH∥BF,根據(jù)菱形的判定的判定可得四邊形FBGH是菱形;

(2)連結(jié)BH,交AC于點(diǎn)O,利用平行四邊形的對角線互相平分可得OB=OH,OF=OG,又AF=CG,所以O(shè)A=OC.再根據(jù)對角線互相垂直平分的平行四邊形得證四邊形ABCH是菱形,再根據(jù)一組鄰邊相等的菱形即可求解.【詳解】(1)∵點(diǎn)F、G是邊AC的三等分點(diǎn),

∴AF=FG=GC.

又∵點(diǎn)D是邊AB的中點(diǎn),

∴DH∥BG.

同理:EH∥BF.

∴四邊形FBGH是平行四邊形,

連結(jié)BH,交AC于點(diǎn)O,

∴OF=OG,

∴AO=CO,

∵AB=BC,

∴BH⊥FG,

∴四邊形FBGH是菱形;

(2)∵四邊形FBGH是平行四邊形,

∴BO=HO,F(xiàn)O=GO.

又∵AF=FG=GC,

∴AF+FO=GC+GO,即:AO=CO.

∴四邊形ABCH是平行四邊形.

∵AC⊥BH,AB=BC,

∴四邊形ABCH是正方形.【點(diǎn)睛】本題考查正方形的判定,菱形的判定和性質(zhì),三角形的中位線,熟練掌握正方形的判定和性質(zhì)是解題的關(guān)鍵.19、燈桿AB的長度為2.3米.【解析】

過點(diǎn)A作AF⊥CE,交CE于點(diǎn)F,過點(diǎn)B作BG⊥AF,交AF于點(diǎn)G,則FG=BC=2.設(shè)AF=x知EF=AF=x、DF==,由DE=13.3求得x=11.4,據(jù)此知AG=AF﹣GF=1.4,再求得∠ABG=∠ABC﹣∠CBG=30°可得AB=2AG=2.3.【詳解】過點(diǎn)A作AF⊥CE,交CE于點(diǎn)F,過點(diǎn)B作BG⊥AF,交AF于點(diǎn)G,則FG=BC=2.由題意得:∠ADE=α,∠E=45°.設(shè)AF=x.∵∠E=45°,∴EF=AF=x.在Rt△ADF中,∵tan∠ADF=,∴DF==.∵DE=13.3,∴x+=13.3,∴x=11.4,∴AG=AF﹣GF=11.4﹣2=1.4.∵∠ABC=120°,∴∠ABG=∠ABC﹣∠CBG=120°﹣90°=30°,∴AB=2AG=2.3.答:燈桿AB的長度為2.3米.【點(diǎn)睛】本題主要考查解直角三角形﹣仰角俯角問題,解題的關(guān)鍵是結(jié)合題意構(gòu)建直角三角形并熟練掌握三角函數(shù)的定義及其應(yīng)用能力.20、(1),;(2)點(diǎn)的坐標(biāo)為;(3)點(diǎn)的坐標(biāo)為和【解析】

(1)根據(jù)二次函數(shù)的對稱軸公式,拋物線上的點(diǎn)代入,即可;(2)先求F的對稱點(diǎn),代入直線BE,即可;(3)構(gòu)造新的二次函數(shù),利用其性質(zhì)求極值.【詳解】解:(1)軸,,拋物線對稱軸為直線點(diǎn)的坐標(biāo)為解得或(舍去),(2)設(shè)點(diǎn)的坐標(biāo)為對稱軸為直線點(diǎn)關(guān)于直線的對稱點(diǎn)的坐標(biāo)為.直線經(jīng)過點(diǎn)利用待定系數(shù)法可得直線的表達(dá)式為.因?yàn)辄c(diǎn)在上,即點(diǎn)的坐標(biāo)為(3)存在點(diǎn)滿足題意.設(shè)點(diǎn)坐標(biāo)為,則作垂足為①點(diǎn)在直線的左側(cè)時(shí),點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為點(diǎn)的坐標(biāo)為在中,時(shí),取最小值.此時(shí)點(diǎn)的坐標(biāo)為②點(diǎn)在直線的右側(cè)時(shí),點(diǎn)的坐標(biāo)為同理,時(shí),取最小值.此時(shí)點(diǎn)的坐標(biāo)為綜上所述:滿足題意得點(diǎn)的坐標(biāo)為和考點(diǎn):二次函數(shù)的綜合運(yùn)用.21、(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此拋物線的對稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【解析】

(1)直接利用等腰直角三角形的性質(zhì)分析得出答案;(2)利用已知點(diǎn)為B(m,m),代入拋物線解析式進(jìn)而得出m的值,即可得出AB的值;(2)①根據(jù)題意得出拋物線必過(2,0),進(jìn)而代入求出答案;②根據(jù)y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時(shí),∠APB為直角,進(jìn)而得出答案.【詳解】(1)MN與AB的關(guān)系是:MN⊥AB,MN=AB,如圖1,∵△AMB是等腰直角三角形,且N為AB的中點(diǎn),∴MN⊥AB,MN=AB,故答案為MN⊥AB,MN=AB;(2)∵拋物線y=對應(yīng)的準(zhǔn)蝶形必經(jīng)過B(m,m),∴m=m2,解得:m=2或m=0(不合題意舍去),當(dāng)m=2則,2=x2,解得:x=±2,則AB=2+2=4;故答案為2,4;(2)①由已知,拋物線對稱軸為:y軸,∵拋物線y=ax2﹣4a﹣(a>0)對應(yīng)的碟寬在x軸上,且AB=1.∴拋物線必過(2,0),代入y=ax2﹣4a﹣(a>0),得,9a﹣4a﹣=0,解得:a=,∴拋物線的解析式是:y=x2﹣2;②由①知,如圖2,y=x2﹣2的對稱軸上P(0,2),P(0,﹣2)時(shí),∠APB為直角,∴在此拋物線的對稱軸上有這樣的點(diǎn)P,使得∠APB為銳角,yp的取值范圍是yp<﹣2或yp>2.【點(diǎn)睛】此題主要考查了二次函數(shù)綜合以及等腰直角三角形的性質(zhì),正確應(yīng)用等腰直角三角形的性質(zhì)是解題關(guān)鍵.22、

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論