2022屆廣東省陽江二中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第1頁
2022屆廣東省陽江二中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第2頁
2022屆廣東省陽江二中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第3頁
2022屆廣東省陽江二中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第4頁
2022屆廣東省陽江二中學(xué)中考數(shù)學(xué)最后一模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022屆廣東省陽江二中學(xué)中考數(shù)學(xué)最后一模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.關(guān)于x的方程3x+2a=x﹣5的解是負(fù)數(shù),則a的取值范圍是()A.a(chǎn)< B.a(chǎn)> C.a(chǎn)<﹣ D.a(chǎn)>﹣2.如圖,在平面直角坐標(biāo)系中,直線y=k1x+2(k1≠0)與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,與反比例函數(shù)y=在第二象限內(nèi)的圖象交于點(diǎn)C,連接OC,若S△OBC=1,tan∠BOC=,則k2的值是()A.3 B.﹣ C.﹣3 D.﹣63.從邊長為的大正方形紙板中挖去一個(gè)邊長為的小正方形紙板后,將其裁成四個(gè)相同的等腰梯形(如圖甲),然后拼成一個(gè)平行四邊形(如圖乙)。那么通過計(jì)算兩個(gè)圖形陰影部分的面積,可以驗(yàn)證成立的公式為()A. B.C. D.4.下列運(yùn)算正確的是()A.2a+3a=5a2B.(a3)3=a9C.a(chǎn)2?a4=a8D.a(chǎn)6÷a3=a25.若關(guān)于x的不等式組無解,則m的取值范圍()A.m>3 B.m<3 C.m≤3 D.m≥36.一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積是()A.24+2π B.16+4π C.16+8π D.16+12π7.的值等于()A. B. C. D.8.若關(guān)于x的方程是一元二次方程,則m的取值范圍是()A.. B.. C. D..9.若實(shí)數(shù)m滿足,則下列對(duì)m值的估計(jì)正確的是()A.﹣2<m<﹣1 B.﹣1<m<0 C.0<m<1 D.1<m<210.如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C,B,E在y軸上,Rt△ABC經(jīng)過變化得到Rt△EDO,若點(diǎn)B的坐標(biāo)為(0,1),OD=2,則這種變化可以是()A.△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度B.△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度C.△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度D.△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位長度二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若關(guān)于的一元二次方程無實(shí)數(shù)根,則一次函數(shù)的圖象不經(jīng)過第_________象限.12.若關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,則m的值是_________.13.如圖,點(diǎn)O(0,0),B(0,1)是正方形OBB1C的兩個(gè)頂點(diǎn),以對(duì)角線OB1為一邊作正方形OB1B2C1,再以正方形OB1B2C1的對(duì)角線OB2為一邊作正方形OB2B3C2,……,依次下去.則點(diǎn)B6的坐標(biāo)____________.14.如圖,正方形ABCD的邊長為,點(diǎn)E在對(duì)角線BD上,且∠BAE=22.5°,EF⊥AB,垂足為點(diǎn)F,則EF的長是__________.15.如圖所示,四邊形ABCD中,,對(duì)角線AC、BD交于點(diǎn)E,且,,若,,則CE的長為_____.16.一個(gè)幾何體的三視圖如左圖所示,則這個(gè)幾何體是()A. B. C. D.三、解答題(共8題,共72分)17.(8分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時(shí),求點(diǎn)D的坐標(biāo).18.(8分)如圖1,拋物線l1:y=﹣x2+bx+3交x軸于點(diǎn)A、B,(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸于點(diǎn)C,其對(duì)稱軸為x=1,拋物線l2經(jīng)過點(diǎn)A,與x軸的另一個(gè)交點(diǎn)為E(5,0),交y軸于點(diǎn)D(0,﹣5).(1)求拋物線l2的函數(shù)表達(dá)式;(2)P為直線x=1上一動(dòng)點(diǎn),連接PA、PC,當(dāng)PA=PC時(shí),求點(diǎn)P的坐標(biāo);(3)M為拋物線l2上一動(dòng)點(diǎn),過點(diǎn)M作直線MN∥y軸(如圖2所示),交拋物線l1于點(diǎn)N,求點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長度的最大值.19.(8分)先化簡,再求代數(shù)式()÷的值,其中a=2sin45°+tan45°.20.(8分)如圖,一次函數(shù)y=﹣x+6的圖象分別交y軸、x軸交于點(diǎn)A、B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度出發(fā),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)點(diǎn)P在運(yùn)動(dòng)過程中,若某一時(shí)刻,△OPA的面積為6,求此時(shí)P的坐標(biāo);(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?(只需寫出t的值,無需解答過程)21.(8分)先化簡,再求值:,其中x=﹣1.22.(10分)計(jì)算:2sin30°﹣(π﹣)0+|﹣1|+()﹣123.(12分)如圖1,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交x軸于B、C兩點(diǎn)(點(diǎn)B在左,點(diǎn)C在右),交y軸于點(diǎn)A,且OA=OC,B(﹣1,0).(1)求此拋物線的解析式;(2)如圖2,點(diǎn)D為拋物線的頂點(diǎn),連接CD,點(diǎn)P是拋物線上一動(dòng)點(diǎn),且在C、D兩點(diǎn)之間運(yùn)動(dòng),過點(diǎn)P作PE∥y軸交線段CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為t,線段PE長為d,寫出d與t的關(guān)系式(不要求寫出自變量t的取值范圍);(3)如圖3,在(2)的條件下,連接BD,在BD上有一動(dòng)點(diǎn)Q,且DQ=CE,連接EQ,當(dāng)∠BQE+∠DEQ=90°時(shí),求此時(shí)點(diǎn)P的坐標(biāo).24.某花卉基地種植了郁金香和玫瑰兩種花卉共30畝,有關(guān)數(shù)據(jù)如表:成本(單位:萬元/畝)銷售額(單位:萬元/畝)郁金香2.43玫瑰22.5(1)設(shè)種植郁金香x畝,兩種花卉總收益為y萬元,求y關(guān)于x的函數(shù)關(guān)系式.(收益=銷售額﹣成本)(2)若計(jì)劃投入的成本的總額不超過70萬元,要使獲得的收益最大,基地應(yīng)種植郁金香和玫瑰個(gè)多少畝?

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

先解方程求出x,再根據(jù)解是負(fù)數(shù)得到關(guān)于a的不等式,解不等式即可得.【詳解】解方程3x+2a=x﹣5得x=,因?yàn)榉匠痰慕鉃樨?fù)數(shù),所以<0,解得:a>﹣.【點(diǎn)睛】本題考查了一元一次方程的解,以及一元一次不等式的解法,解一元一次不等式時(shí),要注意的是:若在不等式左右兩邊同時(shí)乘以或除以同一個(gè)負(fù)數(shù)時(shí),不等號(hào)方向要改變.2、C【解析】

如圖,作CH⊥y軸于H.通過解直角三角形求出點(diǎn)C坐標(biāo)即可解決問題.【詳解】解:如圖,作CH⊥y軸于H.由題意B(0,2),∵∴CH=1,∵tan∠BOC=∴OH=3,∴C(﹣1,3),把點(diǎn)C(﹣1,3)代入,得到k2=﹣3,故選C.【點(diǎn)睛】本題考查反比例函數(shù)于一次函數(shù)的交點(diǎn)問題,銳角三角函數(shù)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.3、D【解析】

分別根據(jù)正方形及平行四邊形的面積公式求得甲、乙中陰影部分的面積,從而得到可以驗(yàn)證成立的公式.【詳解】陰影部分的面積相等,即甲的面積=a2﹣b2,乙的面積=(a+b)(a﹣b).即:a2﹣b2=(a+b)(a﹣b).所以驗(yàn)證成立的公式為:a2﹣b2=(a+b)(a﹣b).故選:D.【點(diǎn)睛】考點(diǎn):等腰梯形的性質(zhì);平方差公式的幾何背景;平行四邊形的性質(zhì).4、B【解析】

直接利用同底數(shù)冪的乘除運(yùn)算法則以及冪的乘方運(yùn)算法則、合并同類項(xiàng)法則分別化簡得出答案.【詳解】A、2a+3a=5a,故此選項(xiàng)錯(cuò)誤;B、(a3)3=a9,故此選項(xiàng)正確;C、a2?a4=a6,故此選項(xiàng)錯(cuò)誤;D、a6÷a3=a3,故此選項(xiàng)錯(cuò)誤.故選:B.【點(diǎn)睛】此題主要考查了同底數(shù)冪的乘除運(yùn)算以及合并同類項(xiàng)和冪的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.5、C【解析】

根據(jù)“大大小小找不著”可得不等式2+m≥2m-1,即可得出m的取值范圍.【詳解】,由①得:x>2+m,由②得:x<2m﹣1,∵不等式組無解,∴2+m≥2m﹣1,∴m≤3,故選C.【點(diǎn)睛】考查了解不等式組,根據(jù)求不等式的無解,遵循“大大小小解不了”原則得出是解題關(guān)鍵.6、D【解析】

根據(jù)三視圖知該幾何體是一個(gè)半徑為2、高為4的圓柱體的縱向一半,據(jù)此求解可得.【詳解】該幾何體的表面積為2×?π?22+4×4+×2π?2×4=12π+16,故選:D.【點(diǎn)睛】本題主要考查由三視圖判斷幾何體,解題的關(guān)鍵是根據(jù)三視圖得出幾何體的形狀及圓柱體的有關(guān)計(jì)算.7、C【解析】試題解析:根據(jù)特殊角的三角函數(shù)值,可知:故選C.8、A【解析】

根據(jù)一元二次方程的定義可得m﹣1≠0,再解即可.【詳解】由題意得:m﹣1≠0,解得:m≠1,故選A.【點(diǎn)睛】此題主要考查了一元二次方程的定義,關(guān)鍵是掌握只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是2的整式方程叫一元二次方程.9、A【解析】試題解析:∵,∴m2+2+=0,∴m2+2=-,∴方程的解可以看作是函數(shù)y=m2+2與函數(shù)y=-,作函數(shù)圖象如圖,在第二象限,函數(shù)y=m2+2的y值隨m的增大而減小,函數(shù)y=-的y值隨m的增大而增大,當(dāng)m=-2時(shí)y=m2+2=4+2=6,y=-=-=2,∵6>2,∴交點(diǎn)橫坐標(biāo)大于-2,當(dāng)m=-1時(shí),y=m2+2=1+2=3,y=-=-=4,∵3<4,∴交點(diǎn)橫坐標(biāo)小于-1,∴-2<m<-1.故選A.考點(diǎn):1.二次函數(shù)的圖象;2.反比例函數(shù)的圖象.10、C【解析】

Rt△ABC通過變換得到Rt△ODE,應(yīng)先旋轉(zhuǎn)然后平移即可【詳解】∵Rt△ABC經(jīng)過變化得到Rt△EDO,點(diǎn)B的坐標(biāo)為(0,1),OD=2,∴DO=BC=2,CO=3,∴將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移3個(gè)單位長度,即可得到△DOE;或?qū)ⅰ鰽BC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度,即可得到△DOE;故選:C.【點(diǎn)睛】本題考查的是坐標(biāo)與圖形變化旋轉(zhuǎn)和平移的知識(shí),解題的關(guān)鍵在于利用旋轉(zhuǎn)和平移的概念和性質(zhì)求坐標(biāo)的變化二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、一【解析】

根據(jù)一元二次方程的定義和判別式的意義得到m≠0且△=(-2)2-4m×(-1)<0,所以m<-1,然后根據(jù)一次函數(shù)的性質(zhì)判斷一次函數(shù)y=mx+m的圖象所在的象限即可.【詳解】∵關(guān)于x的一元二次方程mx2-2x-1=0無實(shí)數(shù)根,∴m≠0且△=(-2)2-4m×(-1)<0,∴m<-1,∴一次函數(shù)y=mx+m的圖象經(jīng)過第二、三、四象限,不經(jīng)過第一象限.故答案為一.【點(diǎn)睛】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程無實(shí)數(shù)根.也考查了一次函數(shù)的性質(zhì).12、m=-【解析】

根據(jù)題意可以得到△=0,從而可以求得m的值.【詳解】∵關(guān)于x的方程有兩個(gè)相等的實(shí)數(shù)根,∴△=,解得:.故答案為.13、(-1,0)【解析】根據(jù)已知條件由圖中可以得到B1所在的正方形的對(duì)角線長為,B2所在的正方形的對(duì)角線長為()2,B3所在的正方形的對(duì)角線長為()3;B4所在的正方形的對(duì)角線長為()4;B5所在的正方形的對(duì)角線長為()5;可推出B6所在的正方形的對(duì)角線長為()6=1.又因?yàn)锽6在x軸負(fù)半軸,所以B6(-1,0).解:如圖所示∵正方形OBB1C,∴OB1=,B1所在的象限為第一象限;∴OB2=()2,B2在x軸正半軸;∴OB3=()3,B3所在的象限為第四象限;∴OB4=()4,B4在y軸負(fù)半軸;∴OB5=()5,B5所在的象限為第三象限;∴OB6=()6=1,B6在x軸負(fù)半軸.∴B6(-1,0).故答案為(-1,0).14、2【解析】

設(shè)EF=x,先由勾股定理求出BD,再求出AE=ED,得出方程,解方程即可.【詳解】設(shè)EF=x,

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=90°,∠ABD=∠ADB=45°,

∴BD=AB=4+4,EF=BF=x,

∴BE=x,

∵∠BAE=22.5°,

∴∠DAE=90°-22.5°=67.5°,

∴∠AED=180°-45°-67.5°=67.5°,

∴∠AED=∠DAE,

∴AD=ED,

∴BD=BE+ED=x+4+2=4+4,

解得:x=2,

即EF=2.15、【解析】

此題有等腰三角形,所以可作BH⊥CD,交EC于點(diǎn)G,利用三線合一性質(zhì)及鄰補(bǔ)角互補(bǔ)可得∠BGD=120°,根據(jù)四邊形內(nèi)角和360°,得到∠ABG+∠ADG=180°.此時(shí)再延長GB至K,使AK=AG,構(gòu)造出等邊△AGK.易證△ABK≌△ADG,從而說明△ABD是等邊三角形,BD=AB=,根據(jù)DG、CG、GH線段之間的關(guān)系求出CG長度,在Rt△DBH中利用勾股定理及三角函數(shù)知識(shí)得到∠EBG的正切值,然后作EF⊥BG,求出EF,在Rt△EFG中解出EG長度,最后CE=CG+GE求解.【詳解】如圖,作于H,交AC于點(diǎn)G,連接DG.∵,∴BH垂直平分CD,∴,∴,∴,∴,延長GB至K,連接AK使,則是等邊三角形,∴,又,∴≌(),∴,∴是等邊三角形,∴,設(shè),則,,∴,∴,在中,,解得,,當(dāng)時(shí),,所以,∴,,,作,設(shè),,,,,∴,,∴,則,故答案為【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì)及等邊三角形、全等三角形的判定和性質(zhì)以及勾股定理的運(yùn)用,綜合性較強(qiáng),正確作出輔助線是解題的關(guān)鍵.16、A【解析】

根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.【詳解】根據(jù)主視圖和左視圖可知該幾何體是柱體,根據(jù)俯視圖可知該幾何體是豎立的三棱柱.主視圖中間的線是實(shí)線.故選A.【點(diǎn)睛】考查簡單幾何體的三視圖,掌握常見幾何體的三視圖是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【解析】

(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時(shí)AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時(shí),AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時(shí),點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).18、(1)拋物線l2的函數(shù)表達(dá)式;y=x2﹣4x﹣1;(2)P點(diǎn)坐標(biāo)為(1,1);(3)在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長度的最大值為12.1.【解析】

(1)由拋物線l1的對(duì)稱軸求出b的值,即可得出拋物線l1的解析式,從而得出點(diǎn)A、點(diǎn)B的坐標(biāo),由點(diǎn)B、點(diǎn)E、點(diǎn)D的坐標(biāo)求出拋物線l2的解析式即可;(2)作CH⊥PG交直線PG于點(diǎn)H,設(shè)點(diǎn)P的坐標(biāo)為(1,y),求出點(diǎn)C的坐標(biāo),進(jìn)而得出CH=1,PH=|3﹣y|,PG=|y|,AG=2,由PA=PC可得PA2=PC2,由勾股定理分別將PA2、PC2用CH、PH、PG、AG表示,列方程求出y的值即可;(3)設(shè)出點(diǎn)M的坐標(biāo),求出兩個(gè)拋物線交點(diǎn)的橫坐標(biāo)分別為﹣1,4,①當(dāng)﹣1<x≤4時(shí),點(diǎn)M位于點(diǎn)N的下方,表示出MN的長度為關(guān)于x的二次函數(shù),在x的范圍內(nèi)求二次函數(shù)的最值;②當(dāng)4<x≤1時(shí),點(diǎn)M位于點(diǎn)N的上方,同理求出此時(shí)MN的最大值,取二者較大值,即可得出MN的最大值.【詳解】(1)∵拋物線l1:y=﹣x2+bx+3對(duì)稱軸為x=1,∴x=﹣=1,b=2,∴拋物線l1的函數(shù)表達(dá)式為:y=﹣x2+2x+3,當(dāng)y=0時(shí),﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),設(shè)拋物線l2的函數(shù)表達(dá)式;y=a(x﹣1)(x+1),把D(0,﹣1)代入得:﹣1a=﹣1,a=1,∴拋物線l2的函數(shù)表達(dá)式;y=x2﹣4x﹣1;(2)作CH⊥PG交直線PG于點(diǎn)H,設(shè)P點(diǎn)坐標(biāo)為(1,y),由(1)可得C點(diǎn)坐標(biāo)為(0,3),∴CH=1,PH=|3﹣y|,PG=|y|,AG=2,∴PC2=12+(3﹣y)2=y2﹣6y+10,PA2==y2+4,∵PC=PA,∴PA2=PC2,∴y2﹣6y+10=y2+4,解得y=1,∴P點(diǎn)坐標(biāo)為(1,1);(3)由題意可設(shè)M(x,x2﹣4x﹣1),∵M(jìn)N∥y軸,∴N(x,﹣x2+2x+3),令﹣x2+2x+3=x2﹣4x﹣1,可解得x=﹣1或x=4,①當(dāng)﹣1<x≤4時(shí),MN=(﹣x2+2x+3)﹣(x2﹣4x﹣1)=﹣2x2+6x+8=﹣2(x﹣)2+,顯然﹣1<≤4,∴當(dāng)x=時(shí),MN有最大值12.1;②當(dāng)4<x≤1時(shí),MN=(x2﹣4x﹣1)﹣(﹣x2+2x+3)=2x2﹣6x﹣8=2(x﹣)2﹣,顯然當(dāng)x>時(shí),MN隨x的增大而增大,∴當(dāng)x=1時(shí),MN有最大值,MN=2(1﹣)2﹣=12.綜上可知:在點(diǎn)M自點(diǎn)A運(yùn)動(dòng)至點(diǎn)E的過程中,線段MN長度的最大值為12.1.【點(diǎn)睛】本題是二次函數(shù)與幾何綜合題,主要考查二次函數(shù)解析式的求解、勾股定理的應(yīng)用以及動(dòng)點(diǎn)求線段最值問題.19、,.【解析】

先把小括號(hào)內(nèi)的通分,按照分式的減法和分式除法法則進(jìn)行化簡,再把字母的值代入運(yùn)算即可.【詳解】解:原式當(dāng)時(shí)原式【點(diǎn)睛】考查分式的混合運(yùn)算,掌握運(yùn)算順序是解題的關(guān)鍵.20、(1)(2,4.5),(-2,7.5);(2)2.8,4,5,16【解析】

(1)先求出△OPA的面積為6時(shí)BP的長,再求出點(diǎn)P的坐標(biāo);(2)分別討論AO=AP,AP=OP和AO=OP三種情況.【詳解】(1)在y=-x+6中,令x=0,得y=6,令y=0,得x=8,∴A(0,6),B(8,0),∴OA=6,OB=8,∴AB=10,∴AB邊上的高為6×8÷10=,∵P點(diǎn)的運(yùn)動(dòng)時(shí)間為t,∴BP=t,則AP=,當(dāng)△AOP面積為6時(shí),則有AP×=6,即×=6,解得t=7.5或12.5,過P作PE⊥x軸,PF⊥y軸,垂足分別為E、F,則PE==4.5或7.5,BE==6或10,則點(diǎn)P坐標(biāo)為(8-6,4.5)或(8-10,7.5),即(2,4.5)或(-2,7.5);(2)由題意可知BP=t,AP=,當(dāng)△AOP為等腰三角形時(shí),有AP=AO、AP=OP和AO=OP三種情況.

①當(dāng)AP=AO時(shí),則有=6,解得t=4或16;②當(dāng)AP=OP時(shí),過P作PM⊥AO,垂足為M,如圖1,則M為AO中點(diǎn),故P為AB中點(diǎn),此時(shí)t=5;③當(dāng)AO=OP時(shí),過O作ON⊥AB,垂足為N,過P作PH⊥OB,垂足為H,如圖2,則AN=AP=(10-t),

∵PH∥AO,∴△AOB∽△PHB,∴=,即=,∴PH=t,又∠OAN+∠AON=∠OAN+PBH=90°,∴∠AON=∠PBH,又∠ANO=∠PHB,

∴△ANO∽△PHB,

∴=,即=,解得t=;綜上可知當(dāng)t的值為、4、5和16時(shí),△AOP為等腰三角形.21、.【解析】試題分析:試題解析:原式===當(dāng)x=時(shí),原式=.考點(diǎn):分式的化簡求值.22、1+【解析】分析:直接利用特殊角的三角函數(shù)值以及零指數(shù)冪的性質(zhì)和負(fù)指數(shù)冪的性質(zhì)分別化簡得出答案.詳解:原式=2×-1+-1+2=1+.點(diǎn)睛:此題主要考查了實(shí)數(shù)運(yùn)算,正確化簡各數(shù)是解題關(guān)鍵.23、(1)y=﹣x2+2x+3;(2)d=﹣t2+4t﹣3;(3)P(,).【解析】

(1)由拋物線y=ax2+bx+3與y軸交于點(diǎn)A,可求得點(diǎn)A的坐標(biāo),又OA=OC,可求得點(diǎn)C的坐標(biāo),然后分別代入B,C的坐標(biāo)求出a,b,即可求得二次函數(shù)的解析式;(2)首先延長PE交x軸于點(diǎn)H,現(xiàn)將解析式換為頂點(diǎn)解析式求得D(1,4),設(shè)直線CD的解析式為y=kx+b,再將點(diǎn)C(3,0)、D(1,4)代入,得y=﹣2x+6,則E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根據(jù)d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于點(diǎn)K,作QM∥x軸交DK于點(diǎn)T,延長PE、EP交OC于H、交QM于M,作ER⊥DK于點(diǎn)R,記QE與DK的交點(diǎn)為N,根據(jù)題意在(2)的條件下先證明△DQT≌△ECH,再根據(jù)全等三角形的性質(zhì)即可得ME=4﹣2(﹣2t+6),QM=t﹣1+(3﹣t),即可求得答案.【詳解】解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論