2022屆湖北省宜昌市天問校中考數(shù)學五模試卷含解析_第1頁
2022屆湖北省宜昌市天問校中考數(shù)學五模試卷含解析_第2頁
2022屆湖北省宜昌市天問校中考數(shù)學五模試卷含解析_第3頁
2022屆湖北省宜昌市天問校中考數(shù)學五模試卷含解析_第4頁
2022屆湖北省宜昌市天問校中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022屆湖北省宜昌市天問校中考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在坐標系中放置一菱形OABC,已知∠ABC=60°,點B在y軸上,OA=1,先將菱形OABC沿x軸的正方向無滑動翻轉,每次翻轉60°,連續(xù)翻轉2017次,點B的落點依次為B1,B2,B3,…,則B2017的坐標為()A.(1345,0) B.(1345.5,) C.(1345,) D.(1345.5,0)2.如圖是一塊帶有圓形空洞和矩形空洞的小木板,則下列物體中最有可能既可以堵住圓形空洞,又可以堵住矩形空洞的是()A.正方體 B.球 C.圓錐 D.圓柱體3.在方格紙中,選擇標有序號①②③④中的一個小正方形涂黑,與圖中陰影部分構成中心對稱圖形.該小正方形的序號是()A.① B.② C.③ D.④4.某校九年級一班全體學生2017年中招理化生實驗操作考試的成績統(tǒng)計如下表,根據(jù)表中的信息判斷,下列結論中錯誤的是()成績(分)3029282618人數(shù)(人)324211A.該班共有40名學生B.該班學生這次考試成績的平均數(shù)為29.4分C.該班學生這次考試成績的眾數(shù)為30分D.該班學生這次考試成績的中位數(shù)為28分5.如圖,AB∥CD,直線EF與AB、CD分別相交于E、F,AM⊥EF于點M,若∠EAM=10°,那么∠CFE等于()A.80° B.85° C.100° D.170°6.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據(jù)題意,可列出二元一次方程組為()A. B. C. D.7.下列各數(shù)中,最小的數(shù)是A. B. C.0 D.8.某種商品每件的標價是270元,按標價的八折銷售時,仍可獲利20%,則這種商品每件的進價為()A.180元 B.200元 C.225元 D.259.2元9.小明解方程的過程如下,他的解答過程中從第()步開始出現(xiàn)錯誤.解:去分母,得1﹣(x﹣2)=1①去括號,得1﹣x+2=1②合并同類項,得﹣x+3=1③移項,得﹣x=﹣2④系數(shù)化為1,得x=2⑤A.① B.② C.③ D.④10.填在下面各正方形中的四個數(shù)之間都有相同的規(guī)律,根據(jù)這種規(guī)律,m的值應是()A.110 B.158 C.168 D.178二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.12.計算:×(﹣2)=___________.13.如圖,某校根據(jù)學生上學方式的一次抽樣調查結果,繪制出一個未完成的扇形統(tǒng)計圖,若該校共有學生1500人,則據(jù)此估計步行的有_____.14.用配方法解方程3x2﹣6x+1=0,則方程可變形為(x﹣__)2=__.15.從一副54張的撲克牌中隨機抽取一張,它是K的概率為_____.16.分解因式:x3﹣2x2+x=______.17.已知a、b是方程x2﹣2x﹣1=0的兩個根,則a2﹣a+b的值是_______.三、解答題(共7小題,滿分69分)18.(10分)請你僅用無刻度的直尺在下面的圖中作出△ABC的邊AB上的高CD.如圖①,以等邊三角形ABC的邊AB為直徑的圓,與另兩邊BC、AC分別交于點E、F.如圖②,以鈍角三角形ABC的一短邊AB為直徑的圓,與最長的邊AC相交于點E.19.(5分)在一個不透明的盒子中裝有大小和形狀相同的3個紅球和2個白球,把它們充分攪勻.“從中任意抽取1個球不是紅球就是白球”是事件,“從中任意抽取1個球是黑球”是事件;從中任意抽取1個球恰好是紅球的概率是;學校決定在甲、乙兩名同學中選取一名作為學生代表發(fā)言,制定如下規(guī)則:從盒子中任取兩個球,若兩球同色,則選甲;若兩球異色,則選乙.你認為這個規(guī)則公平嗎?請用列表法或畫樹狀圖法加以說明.20.(8分)已知:如圖,∠ABC,射線BC上一點D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.21.(10分)如圖1,圖2分別是某款籃球架的實物圖與示意圖,已知底座BC=1.5米,底座BC與支架AC所成的角∠ACB=60°,支架AF的長為2.50米,籃板頂端F點到籃筐D的距離FD=1.3米,籃板底部支架HE與支架AF所成的角∠FHE=45°,求籃筐D到地面的距離.(精確到0.01米參考數(shù)據(jù):≈1.73,≈1.41)22.(10分)有A,B兩個黑布袋,A布袋中有兩個完全相同的小球,分別標有數(shù)字1和1.B布袋中有三個完全相同的小球,分別標有數(shù)字﹣1,﹣1和﹣2.小明從A布袋中隨機取出一個小球,記錄其標有的數(shù)字為x,再從B布袋中隨機取出一個小球,記錄其標有的數(shù)字為y,這樣就確定點Q的一個坐標為(x,y).(1)用列表或畫樹狀圖的方法寫出點Q的所有可能坐標;(1)求點Q落在直線y=﹣x﹣1上的概率.23.(12分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.24.(14分)如圖1,△ABC與△CDE都是等腰直角三角形,直角邊AC,CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE,BD,PM,PN,MN.(1)觀察猜想:圖1中,PM與PN的數(shù)量關系是,位置關系是.(2)探究證明:將圖1中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖2,AE與MP、BD分別交于點G、H,判斷△PMN的形狀,并說明理由;(3)拓展延伸:把△CDE繞點C任意旋轉,若AC=4,CD=2,請直接寫出△PMN面積的最大值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】連接AC,如圖所示.∵四邊形OABC是菱形,∴OA=AB=BC=OC.∵∠ABC=60°,∴△ABC是等邊三角形.∴AC=AB.∴AC=OA.∵OA=1,∴AC=1.畫出第5次、第6次、第7次翻轉后的圖形,如圖所示.由圖可知:每翻轉6次,圖形向右平移2.∵3=336×6+1,∴點B1向右平移1322(即336×2)到點B3.∵B1的坐標為(1.5,),∴B3的坐標為(1.5+1322,),故選B.點睛:本題是規(guī)律題,能正確地尋找規(guī)律“每翻轉6次,圖形向右平移2”是解題的關鍵.2、D【解析】

本題中,圓柱的俯視圖是個圓,可以堵住圓形空洞,它的正視圖和左視圖是個矩形,可以堵住方形空洞.【詳解】根據(jù)三視圖的知識來解答.圓柱的俯視圖是一個圓,可以堵住圓形空洞,而它的正視圖以及側視圖都為一個矩形,可以堵住方形的空洞,故圓柱是最佳選項.故選D.【點睛】此題考查立體圖形,本題將立體圖形的三視圖運用到了實際中,只要弄清楚了立體圖形的三視圖,解決這類問題其實并不難.3、B【解析】根據(jù)中心對稱圖形的概念,中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合。因此,通過觀察發(fā)現(xiàn),當涂黑②時,所形成的圖形關于點A中心對稱。故選B。4、D【解析】A.∵32+4+2+1+1=40(人),故A正確;B.∵(30×32+29×4+28×2+26+18)÷40=29.4(分),故B正確;C.∵成績是30分的人有32人,最多,故C正確;D.該班學生這次考試成績的中位數(shù)為30分,故D錯誤;5、C【解析】

根據(jù)題意,求出∠AEM,再根據(jù)AB∥CD,得出∠AEM與∠CFE互補,求出∠CFE.【詳解】∵AM⊥EF,∠EAM=10°∴∠AEM=80°又∵AB∥CD∴∠AEM+∠CFE=180°∴∠CFE=100°.故選C.【點睛】本題考查三角形內角和與兩條直線平行內錯角相等.6、A【解析】

根據(jù)題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據(jù)此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據(jù)實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.7、A【解析】

應明確在數(shù)軸上,從左到右的順序,就是數(shù)從小到大的順序,據(jù)此解答.【詳解】解:因為在數(shù)軸上-3在其他數(shù)的左邊,所以-3最??;故選A.【點睛】此題考負數(shù)的大小比較,應理解數(shù)字大的負數(shù)反而小.8、A【解析】

設這種商品每件進價為x元,根據(jù)題中的等量關系列方程求解.【詳解】設這種商品每件進價為x元,則根據(jù)題意可列方程270×0.8-x=0.2x,解得x=180.故選A.【點睛】本題主要考查一元一次方程的應用,解題的關鍵是確定未知數(shù),根據(jù)題中的等量關系列出正確的方程.9、A【解析】

根據(jù)解分式方程的方法可以判斷哪一步是錯誤的,從而可以解答本題.【詳解】=1,去分母,得1-(x-2)=x,故①錯誤,故選A.【點睛】本題考查解分式方程,解答本題的關鍵是明確解分式方程的方法.10、B【解析】根據(jù)排列規(guī)律,10下面的數(shù)是12,10右面的數(shù)是14,∵8=2×4?0,22=4×6?2,44=6×8?4,∴m=12×14?10=158.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質以及銳角三角函數(shù)關系等知識,得出A′點位置是解題關鍵.12、-1【解析】

根據(jù)“兩數(shù)相乘,異號得負,并把絕對值相乘”即可求出結論.【詳解】故答案為【點睛】本題考查了有理數(shù)的乘法,牢記“兩數(shù)相乘,同號得正,異號得負,并把絕對值相乘”是解題的關鍵.13、1【解析】

∵騎車的學生所占的百分比是×100%=35%,∴步行的學生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若該校共有學生1500人,則據(jù)此估計步行的有1500×40%=1(人),故答案為1.14、1【解析】原方程為3x2?6x+1=0,二次項系數(shù)化為1,得x2?2x=?,即x2?2x+1=?+1,所以(x?1)2=.故答案為:1,.15、【解析】

根據(jù)概率的求法,找準兩點:①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.【詳解】一副撲克牌共有54張,其中只有4張K,∴從一副撲克牌中隨機抽出一張牌,得到K的概率是=,故答案為:.【點睛】此題考查了概率公式,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=.16、x(x-1)2.【解析】由題意得,x3﹣2x2+x=x(x﹣1)217、1【解析】

根據(jù)一元二次方程的解及根與系數(shù)的關系,可得出a2-2a=1、a+b=2,將其代入a2-a+b中即可求出結論.【詳解】∵a、b是方程x2-2x-1=0的兩個根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案為1.【點睛】本題考查根與系數(shù)的關系以及一元二次方程的解,牢記兩根之和等于-、兩根之積等于是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2)詳見解析.【解析】

(1)連接AE、BF,找到△ABC的高線的交點,據(jù)此可得CD;(2)延長CB交圓于點F,延長AF、EB交于點G,連接CG,延長AB交CG于點D,據(jù)此可得.【詳解】(1)如圖所示,CD即為所求;(2)如圖,CD即為所求.【點睛】本題主要考查作圖-基本作圖,解題的關鍵熟練掌握圓周角定理和三角形的三條高線交于一點的性質.19、(1)必然,不可能;(2);(3)此游戲不公平.【解析】

(1)直接利用必然事件以及怒不可能事件的定義分別分析得出答案;(2)直接利用概率公式求出答案;(3)首先畫出樹狀圖,進而利用概率公式求出答案.【詳解】(1)“從中任意抽取1個球不是紅球就是白球”是必然事件,“從中任意抽取1個球是黑球”是不可能事件;故答案為必然,不可能;(2)從中任意抽取1個球恰好是紅球的概率是:;故答案為;(3)如圖所示:,由樹狀圖可得:一共有20種可能,兩球同色的有8種情況,故選擇甲的概率為:;則選擇乙的概率為:,故此游戲不公平.【點睛】此題主要考查了游戲公平性,正確列出樹狀圖是解題關鍵.20、作圖見解析.【解析】

由題意可知,先作出∠ABC的平分線,再作出線段BD的垂直平分線,交點即是P點.【詳解】∵點P到∠ABC兩邊的距離相等,∴點P在∠ABC的平分線上;∵線段BD為等腰△PBD的底邊,∴PB=PD,∴點P在線段BD的垂直平分線上,∴點P是∠ABC的平分線與線段BD的垂直平分線的交點,如圖所示:【點睛】此題主要考查了尺規(guī)作圖,正確把握角平分線的性質和線段垂直平分線的性質是解題的關鍵.21、3.05米【解析】

延長FE交CB的延長線于M,過A作AG⊥FM于G,解直角三角形即可得到正確結論.【詳解】解:如圖:延長FE交CB的延長線于M,過A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC?tan60°=1.5×1.73=2.595,∴GM=AB=2.595,在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,∴sin45°=,∴FG=1.76,∴DM=FG+GM﹣DF≈3.05米.答:籃框D到地面的距離是3.05米.【點睛】本題主要考查直角三角形和三角函數(shù),構造合適的輔助線是本題解題的關鍵.22、(1)見解析;(1)【解析】試題分析:先用列表法寫出點Q的所有可能坐標,再根據(jù)概率公式求解即可.(1)由題意得

1

1

-1

(1,-1)

(1,-1)

-1

(1,-1)

(1,-1)

-2

(1,-2)

(1,-2)

(1)共有6種等可能情況,符合條件的有1種P(點Q在直線y=?x?1上)=.考點:概率公式點評:解題的關鍵是熟練掌握概率公式:概率=所求情況數(shù)與總情況數(shù)的比值.23、(1)證明見解析;(2)當∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應角相等即可;(2)當∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與性質及圓周角定理的知識,解題的關鍵是了解菱形的判定方法及全等三角形的判定方法,難度不大.24、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由見解析(3)【解析】

(1)由等腰直角三角形的性質易證△ACE≌△BCD,由此可得AE=BD,再根據(jù)三角形中位線定理即可得到PM=PN,由平行線的性質可得PM⊥PN;(2)(1)中的結論仍舊成立,由(1)中的證明思路即可證明;(3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出當BD的值最大時,PM的值最大,△PMN的面積最大,推出當B、C、D共線時,BD的最大值=BC+CD=6,由此即可解決問題;【詳解】解:(1)PM=PN,PM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論