版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
2022屆山東省聊城二中中考數(shù)學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在0,﹣2,3,四個數(shù)中,最小的數(shù)是()A.0 B.﹣2 C.3 D.2.等腰中,,D是AC的中點,于E,交BA的延長線于F,若,則的面積為()A.40 B.46 C.48 D.503.如圖,四邊形ABCD內(nèi)接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°4.下列運算正確的是()A.﹣3a+a=﹣4a B.3x2?2x=6x2C.4a2﹣5a2=a2 D.(2x3)2÷2x2=2x45.在數(shù)軸上表示不等式組的解集,正確的是()A. B.C. D.6.已知二次函數(shù)y=3(x﹣1)2+k的圖象上有三點A(,y1),B(2,y2),C(﹣,y3),則y1、y2、y3的大小關系為()A.y1>y2>y3 B.y2>y1>y3 C.y3>y1>y2 D.y3>y2>y17.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數(shù)的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y38.下列圖案中,是軸對稱圖形但不是中心對稱圖形的是()A. B. C. D.9.如圖,E為平行四邊形ABCD的邊AB延長線上的一點,且BE:AB=2:3,△BEF的面積為4,則平行四邊形ABCD的面積為()
A.30 B.27 C.14 D.3210.PM2.5是指大氣中直徑≤0.0000025米的顆粒物,將0.0000025用科學記數(shù)法表示為()A.2.5×10﹣7 B.2.5×10﹣6 C.25×10﹣7 D.0.25×10﹣5二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在每個小正方形的邊長為1的網(wǎng)格中,點A,B,C均在格點上.(Ⅰ)AC的長等于_____;(Ⅱ)在線段AC上有一點D,滿足AB2=AD?AC,請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出點D,并簡要說明點D的位置是如何找到的(不要求證明)_____.12.如圖,直線y=x,點A1坐標為(1,0),過點A1作x軸的垂線交直線于點B1,以原點O為圓心,OB1長為半徑畫弧交x軸于點A2,再過點A2作x軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交x軸于點A3,……按此作法進行去,點Bn的縱坐標為(n為正整數(shù)).13.如圖,四邊形ABCD是菱形,☉O經(jīng)過點A,C,D,與BC相交于點E,連接AC,AE,若∠D=78°,則∠EAC=________°.14.因式分解:16a3﹣4a=_____.15.一個不透明的布袋里裝有5個紅球,2個白球,3個黃球,它們除顏色外其余都相同,從袋中任意摸出2個球,都是黃球的概率為.16.若關于x的方程有增根,則m的值是▲17.拋物線y=﹣x2+bx+c的部分圖象如圖所示,則關于x的一元二次方程﹣x2+bx+c=0的解為_____.三、解答題(共7小題,滿分69分)18.(10分)如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經(jīng)過點B的直線交y軸于點E(0,2).(1)求該拋物線的解析式;(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結(jié)PA,EA,ED,PD,求四邊形EAPD面積的最大值;(3)如圖3,連結(jié)AC,將△AOC繞點O逆時針方向旋轉(zhuǎn),記旋轉(zhuǎn)中的三角形為△A′OC′,在旋轉(zhuǎn)過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.19.(5分)閱讀材料:對于線段的垂直平分線我們有如下結(jié)論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據(jù)閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結(jié)AE、BE,△ABE經(jīng)順時針旋轉(zhuǎn)后與△BCF重合.(I)旋轉(zhuǎn)中心是點,旋轉(zhuǎn)了(度);(II)當點E從點D向點C移動時,連結(jié)AF,設AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數(shù);若改變,請說出變化情況.20.(8分)在△ABC中,AB=AC,∠BAC=α,點P是△ABC內(nèi)一點,且∠PAC+∠PCA=,連接PB,試探究PA、PB、PC滿足的等量關系.(1)當α=60°時,將△ABP繞點A逆時針旋轉(zhuǎn)60°得到△ACP′,連接PP′,如圖1所示.由△ABP≌△ACP′可以證得△APP′是等邊三角形,再由∠PAC+∠PCA=30°可得∠APC的大小為度,進而得到△CPP′是直角三角形,這樣可以得到PA、PB、PC滿足的等量關系為;(2)如圖2,當α=120°時,參考(1)中的方法,探究PA、PB、PC滿足的等量關系,并給出證明;(3)PA、PB、PC滿足的等量關系為.21.(10分)如圖,⊙O是△ABC的外接圓,F(xiàn)H是⊙O的切線,切點為F,F(xiàn)H∥BC,連結(jié)AF交BC于E,∠ABC的平分線BD交AF于D,連結(jié)BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.22.(10分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結(jié)果保留π和根號).23.(12分)如圖,在平面直角坐標系中,等邊三角形ABC的頂點B與原點O重合,點C在x軸上,點C坐標為(6,0),等邊三角形ABC的三邊上有三個動點D、E、F(不考慮與A、B、C重合),點D從A向B運動,點E從B向C運動,點F從C向A運動,三點同時運動,到終點結(jié)束,且速度均為1cm/s,設運動的時間為ts,解答下列問題:(1)求證:如圖①,不論t如何變化,△DEF始終為等邊三角形.(2)如圖②過點E作EQ∥AB,交AC于點Q,設△AEQ的面積為S,求S與t的函數(shù)關系式及t為何值時△AEQ的面積最大?求出這個最大值.(3)在(2)的條件下,當△AEQ的面積最大時,平面內(nèi)是否存在一點P,使A、D、Q、P構(gòu)成的四邊形是菱形,若存在請直接寫出P坐標,若不存在請說明理由?24.(14分)已知,如圖所示直線y=kx+2(k≠0)與反比例函數(shù)y=(m≠0)分別交于點P,與y軸、x軸分別交于點A和點B,且cos∠ABO=,過P點作x軸的垂線交于點C,連接AC,(1)求一次函數(shù)的解析式.(2)若AC是△PCB的中線,求反比例函數(shù)的關系式.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
根據(jù)實數(shù)比較大小的法則進行比較即可.【詳解】∵在這四個數(shù)中3>0,>0,-2<0,∴-2最?。蔬xB.【點睛】本題考查的是實數(shù)的大小比較,即正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?、C【解析】∵CE⊥BD,∴∠BEF=90°,∵∠BAC=90°,∴∠CAF=90°,∴∠FAC=∠BAD=90°,∠ABD+∠F=90°,∠ACF+∠F=90°,∴∠ABD=∠ACF,又∵AB=AC,∴△ABD≌△ACF,∴AD=AF,∵AB=AC,D為AC中點,∴AB=AC=2AD=2AF,∵BF=AB+AF=12,∴3AF=12,∴AF=4,∴AB=AC=2AF=8,∴S△FBC=×BF×AC=×12×8=48,故選C.3、D【解析】分析:先根據(jù)圓內(nèi)接四邊形的性質(zhì)得到然后根據(jù)圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內(nèi)接四邊形的性質(zhì),圓周角定理,掌握圓內(nèi)接四邊形的對角互補是解題的關鍵.4、D【解析】
根據(jù)合并同類項、單項式的乘法、積的乘方和單項式的乘法逐項計算,結(jié)合排除法即可得出答案.【詳解】A.﹣3a+a=﹣2a,故不正確;B.3x2?2x=6x3,故不正確;C.4a2﹣5a2=-a2,故不正確;D.(2x3)2÷2x2=4x6÷2x2=2x4,故正確;故選D.【點睛】本題考查了合并同類項、單項式的乘法、積的乘方和單項式的乘法,熟練掌握它們的運算法則是解答本題的關鍵.5、C【解析】
解不等式組,再將解集在數(shù)軸上正確表示出來即可【詳解】解1+x≥0得x≥﹣1,解2x-4<0得x<2,所以不等式的解集為﹣1≤x<2,故選C.【點睛】本題主要考查了一元一次不等式組的求解,求出題中不等式組的解集是解題的關鍵.6、D【解析】試題分析:根據(jù)二次函數(shù)的解析式y(tǒng)=3(x-1)2+k,可知函數(shù)的開口向上,對稱軸為x=1,根據(jù)函數(shù)圖像的對稱性,可得這三點的函數(shù)值的大小為y3>y2>y1.故選D點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解題時先根據(jù)頂點式求出開口方向,和對稱軸,然后根據(jù)函數(shù)的增減性比較即可,這是中考常考題,難度有點偏大,注意結(jié)合圖形判斷驗證.7、A【解析】
作出反比例函數(shù)的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數(shù)的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.8、D【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念分別分析得出答案.詳解:A.是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;B.不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C.不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;D.是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.9、A【解析】∵四邊形ABCD是平行四邊形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四邊形ABFD=S△AED-S△BEF=25-4=21,∴S平行四邊形ABCD=S△CDF+S四邊形ABFD=9+21=30,故選A.【點睛】本題考查了平行四邊形的性質(zhì),相似三角形的判定與性質(zhì)等,熟記相似三角形的面積等于相似比的平方是解題的關鍵.10、B【解析】
絕對值小于1的正數(shù)也可以利用科學記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】解:0.0000025=2.5×10﹣6;故選B.【點睛】本題考查了用科學記數(shù)法表示較小的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.二、填空題(共7小題,每小題3分,滿分21分)11、5見解析.【解析】
(1)由勾股定理即可求解;(2)尋找格點M和N,構(gòu)建與△ABC全等的△AMN,易證MN⊥AC,從而得到MN與AC的交點即為所求D點.【詳解】(1)AC=;(2)如圖,連接格點M和N,由圖可知:AB=AM=4,BC=AN=,AC=MN=,∴△ABC≌△MAN,∴∠AMN=∠BAC,∴∠MAD+∠CAB=∠MAD+∠AMN=90°,∴MN⊥AC,易解得△MAN以MN為底時的高為,∵AB2=AD?AC,∴AD=AB2÷AC=,綜上可知,MN與AC的交點即為所求D點.【點睛】本題考查了平面直角坐標系中定點的問題,理解第2問中構(gòu)造全等三角形從而確定D點的思路.12、.【解析】尋找規(guī)律:由直線y=x的性質(zhì)可知,∵B2,B3,…,Bn是直線y=x上的點,∴△OA1B1,△OA2B2,…△OAnBn都是等腰直角三角形,且A2B2=OA2=OB1=OA1;A3B3=OA3=OB2=OA2=OA1;A4B4=OA4=OB3=OA3=OA1;…….又∵點A1坐標為(1,0),∴OA1=1.∴,即點Bn的縱坐標為.13、1.【解析】
解:∵四邊形ABCD是菱形,∠D=78°,∴∠ACB=(180°-∠D)=51°,又∵四邊形AECD是圓內(nèi)接四邊形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB-∠ACB=1°.故答案為:1°14、4a(2a+1)(2a﹣1)【解析】
首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.15、【解析】
讓黃球的個數(shù)除以球的總個數(shù)即為所求的概率.【詳解】解:因為一共10個球,其中3個黃球,所以從袋中任意摸出2個球是黃球的概率是.
故答案為:.【點睛】本題考查了概率的基本計算,用到的知識點為:概率等于所求情況數(shù)與總情況數(shù)之比.16、1.【解析】方程兩邊都乘以最簡公分母(x-2),把分式方程化為整式方程,再根據(jù)分式方程的增根就是使最簡公分母等于1的未知數(shù)的值求出x的值,然后代入進行計算即可求出m的值:方程兩邊都乘以(x-2)得,2-x-m=2(x-2).∵分式方程有增根,∴x-2=1,解得x=2.∴2-2-m=2(2-2),解得m=1.17、x1=1,x2=﹣1.【解析】
直接觀察圖象,拋物線與x軸交于1,對稱軸是x=﹣1,所以根據(jù)拋物線的對稱性可以求得拋物線與x軸的另一交點坐標,從而求得關于x的一元二次方程﹣x2+bx+c=0的解.【詳解】解:觀察圖象可知,拋物線y=﹣x2+bx+c與x軸的一個交點為(1,0),對稱軸為x=﹣1,∴拋物線與x軸的另一交點坐標為(﹣1,0),∴一元二次方程﹣x2+bx+c=0的解為x1=1,x2=﹣1.故本題答案為:x1=1,x2=﹣1.【點睛】本題考查了二次函數(shù)與一元二次方程的關系.一元二次方程-x2+bx+c=0的解實質(zhì)上是拋物線y=-x2+bx+c與x軸交點的橫坐標的值.三、解答題(共7小題,滿分69分)18、(1)y=x2﹣x﹣2;(2)9;(3)Q坐標為(﹣)或(4﹣)或(2,1)或(4+,﹣).【解析】試題分析:把點代入拋物線,求出的值即可.先用待定系數(shù)法求出直線BE的解析式,進而求得直線AD的解析式,設則表示出,用配方法求出它的最大值,聯(lián)立方程求出點的坐標,最大值=,進而計算四邊形EAPD面積的最大值;分兩種情況進行討論即可.試題解析:(1)∵在拋物線上,∴解得∴拋物線的解析式為(2)過點P作軸交AD于點G,∵∴直線BE的解析式為∵AD∥BE,設直線AD的解析式為代入,可得∴直線AD的解析式為設則則∴當x=1時,PG的值最大,最大值為2,由解得或∴∴最大值=∵AD∥BE,∴∴S四邊形APDE最大=S△ADP最大+(3)①如圖3﹣1中,當時,作于T.∵∴∴∴可得②如圖3﹣2中,當時,當時,當時,Q3綜上所述,滿足條件點點Q坐標為或或或19、B60【解析】分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出結(jié)論;(2)根據(jù)旋轉(zhuǎn)的性質(zhì)可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數(shù).詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設與交于點∵直線是等邊的對稱軸∴,∵經(jīng)順時針旋轉(zhuǎn)后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉(zhuǎn)的性質(zhì),解題的關鍵是熟記旋轉(zhuǎn)的性質(zhì)及垂直平分線的性質(zhì),注意只證明一點是不能說明這條直線是垂直平分線的.20、(1)150,(1)證明見解析(3)【解析】
(1)根據(jù)旋轉(zhuǎn)變換的性質(zhì)得到△PAP′為等邊三角形,得到∠P′PC=90°,根據(jù)勾股定理解答即可;(1)如圖1,作將△ABP繞點A逆時針旋轉(zhuǎn)110°得到△ACP′,連接PP′,作AD⊥PP′于D,根據(jù)余弦的定義得到PP′=PA,根據(jù)勾股定理解答即可;(3)與(1)類似,根據(jù)旋轉(zhuǎn)變換的性質(zhì)、勾股定理和余弦、正弦的關系計算即可.試題解析:【詳解】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=60°,P′C=PB,∴△PAP′為等邊三角形,∴∠APP′=60°,∵∠PAC+∠PCA=×60°=30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′1+PC1=P′C1,∴PA1+PC1=PB1,故答案為150,PA1+PC1=PB1;(1)如圖,作°,使,連接,.過點A作AD⊥于D點.∵°,即,∴.∵AB=AC,,∴.∴,°.∵AD⊥,∴°.∴在Rt中,.∴.∵°,∴°.∴°.∴在Rt中,.∴;(3)如圖1,與(1)的方法類似,作將△ABP繞點A逆時針旋轉(zhuǎn)α得到△ACP′,連接PP′,作AD⊥PP′于D,由旋轉(zhuǎn)變換的性質(zhì)可知,∠PAP′=α,P′C=PB,∴∠APP′=90°-,∵∠PAC+∠PCA=,∴∠APC=180°-,∴∠P′PC=(180°-)-(90°-)=90°,∴PP′1+PC1=P′C1,∵∠APP′=90°-,∴PD=PA?cos(90°-)=PA?sin,∴PP′=1PA?sin,∴4PA1sin1+PC1=PB1,故答案為4PA1sin1+PC1=PB1.【點睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、等邊三角形的性質(zhì)、勾股定理的應用,掌握等邊三角形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)、靈活運用類比思想是解題的關鍵.21、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=22、(1)見解析;(2)【解析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質(zhì),可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【點睛】本題主要考查切線的性質(zhì)與判定、扇形的面積等,解題關鍵在于用整體減去部分的方法計算.23、(1)證明見解析;(2)當t=3時,△AEQ的面積最大為cm2;(3)(3,0)或(6,3)或(0,3)【解析】
(1)由三角形ABC為等邊三角形,以及AD=BE=CF,進而得出三角形ADF與三角形CFE與三角形BED全等,利用全等三角形對應邊相等得到BF=DF=DE,即可得證;(2)先表示出三角形AEC面積,根據(jù)EQ與AB平行,得到三角形CEQ與三角形ABC相似,利用相似三角形面積比等于相似比的平方表示出三角形CEQ面積,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東松山職業(yè)技術學院《工程制圖基礎》2023-2024學年第一學期期末試卷
- 廣東汕頭幼兒師范高等專科學?!稌r裝表演藝術》2023-2024學年第一學期期末試卷
- 廣東南方職業(yè)學院《市場調(diào)研》2023-2024學年第一學期期末試卷
- 廣東茂名幼兒師范??茖W校《理財與稅收籌劃》2023-2024學年第一學期期末試卷
- 廣東理工職業(yè)學院《幼兒藝術教育與活動指導(美術)》2023-2024學年第一學期期末試卷
- 從“愚昧”到“科學”:科學技術簡史(清華大學)學習通測試及答案
- 【高考解碼】2021屆高三生物二輪復習專題-生物與環(huán)境檢測試題(B)
- 2024全光智慧城市發(fā)展報告
- 內(nèi)蒙古包頭市一機一中2014-2021學年高一上學期期中政治試題-含解析
- 【中學教材全解】2020年秋高中物理必修一課時學案:第四章-牛頓運動定律-第5節(jié)-牛頓第三定律
- 水利安全生產(chǎn)風險防控“六項機制”右江模式經(jīng)驗分享
- “雙減”背景下小學數(shù)學“教、學、評”一體化的思考與實踐
- 中外美術評析與欣賞智慧樹知到期末考試答案章節(jié)答案2024年湖南大學
- 事業(yè)單位考試《綜合知識和能力測試》試卷
- 2023年山西普通高中會考信息技術真題及答案
- 老人健康飲食知識講座
- 福利住房與購房補貼制度
- 康師傅烏龍茗茶營銷策劃書
- 浙江省溫州市2022-2023學年四年級上學期語文期末試卷(含答案)
- 【川教版】《生命 生態(tài) 安全》四上第13課《預防凍瘡》課件
- 工廠籌建方案
評論
0/150
提交評論