Python機器學(xué)習教程_第1頁
Python機器學(xué)習教程_第2頁
Python機器學(xué)習教程_第3頁
Python機器學(xué)習教程_第4頁
Python機器學(xué)習教程_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

想要理解和研究機器學(xué)習,首先你應(yīng)該要掌握Python或者R,都是和C,Java,PHP差不多的語言(譯:差太多了好吧).不過呢,Python和R都是比較年輕(譯:不懂,Python可并不年輕吧),而且呢更高級,完全不用理解底層(譯:?),所以他倆都很容易學(xué).Python更牛逼的地方在于她能夠處理更多的問題,比如,機器學(xué)習,算法,圖像等,而不像R只能是進行數(shù)據(jù)處理和分析.Python有著更廣泛的應(yīng)用領(lǐng)域,比如后端框架Django(譯:原文是,'Hostingwebsites:Jango'),自然語言處理(譯:原文是,'naturallanguageproecssing',作者太不認真,NLP),網(wǎng)站接入等,而且Python更像C語言(譯:扯淡),所以她現(xiàn)在很流行.毛子的原文里面有不少錯誤,我以自己的理解加以修正,僅供參考.語法文法錯誤我就直接修改,原文作者的表達內(nèi)容錯誤會依據(jù)原文不變,在()內(nèi)說明.新手用Python進行機器學(xué)習的四個步驟Python基礎(chǔ)知識學(xué)習,有書,Mooc,視頻.處理數(shù)據(jù),你得了解一些模塊,如:Pandas,Numpy,Matplotlib和NaturalLanguageProcessing.接著你就得爬取數(shù)據(jù),可以通過API,也可以直接到網(wǎng)站上去爬取.網(wǎng)站爬蟲模塊:BeautifulSoup(譯:應(yīng)該是Scrapy,BS是HTML/XML解析器).我們用拿到的數(shù)據(jù)來訓(xùn)練算法.最后一步,就是要學(xué)習ML的相關(guān)算法,以及工具Scikit-learn.1.學(xué)習Python學(xué)習Python最簡單粗暴的法子就是到Codecademy上去注冊個賬號來學(xué)習基礎(chǔ)知識.一個被好多碼農(nóng)推薦的很經(jīng)典的網(wǎng)站LearnPythonTheHardWay.ByteofPython這篇文章是非常值得去學(xué)習的.Python社區(qū)還為新手給出了一個Python學(xué)習資源列表.O’Reilley出版的一本書ThinkPython,這里可以免費下載.最后還有一個IntroductiontoPythonforEconometrics,StatisticsandDataAnalysis也講了好多Python的基礎(chǔ)知識.2.導(dǎo)入模塊做機器學(xué)習很重要的幾個模塊和工具是NumPy,Pandas,Matplotlib和IPython.DataAnalysiswithOpenSourceTools這本書里面都有涉及這些內(nèi)容.上面提到的IntroductiontoPythonforEconometrics,StatisticsandDataAnalysis也涵蓋了這些東西.還有一本書PythonforDataAnalysis:DataWranglingwithPandas,NumPy,andIPython.下面還有一些免費的資源:10minutestoPandasPandasformachinelearning100NumPyexercises3.爬取挖掘數(shù)據(jù)一旦你掌握了Python的基礎(chǔ),下面就要學(xué)會怎么去爬取數(shù)據(jù).也就是網(wǎng)頁爬蟲.像Twitter和LinkedIn這些網(wǎng)站都給出了APIs接口,讓我們?nèi)カ@得文本數(shù)據(jù).關(guān)于這方面下面有幾本書不錯的書:MiningtheSocialWeb(免費),WebScrapingwithPython和WebScrapingwithPython:CollectingDatafromtheModernWeb.最后這些文本數(shù)據(jù)要由NLP技術(shù)處理成數(shù)值化數(shù)據(jù):NaturallanguageprocessingwithPython.圖像和視頻要用圖像處理CV,下面有幾個不錯的資源:ProgrammingComputerVisionwithPython(免費),ProgrammingComputerVisionwithPython:Toolsandalgorithmsforanalyzingimages和PracticalPythonandOpenCV.Python爬蟲的一些例子:Mini-Tutorial:SavingTweetstoaDatabasewithPythonWebScrapingIndeedforKeyDataScienceJobSkillsCaseStudy:SentimentAnalysisOnMovieReviewsFirstWebScraperSentimentAnalysisofEmailsSimpleTextClassificationBasicSentimentAnalysiswithPythonTwittersentimentanalysisusingPythonandNLTKSecondTry:SentimentAnalysisinPythonNaturalLanguageProcessinginaKaggleCompetitionforMovieReviews4.機器學(xué)習機器學(xué)習可以分為四部分:分類,聚類,回歸和降維.MachinelearninginPythonScikit-learn官網(wǎng)上有很多指南,下面列一些其它的:IntroductiontoMachineLearningwithPythonandScikit-LearnDataScienceinPythonMachineLearningforPredictingBadLoansAGenericArchitectureforTextClassificationwithMachineLearningUsingPythonandAItopredicttypesofwineAdviceforapplyingMachineLearningPredictingcustomerchurnwithscikit-learnMappingYourMusicCollectionDataScienceinPythonCaseStudy:SentimentAnalysisonMovieReviewsDocumentClusteringwithPythonFivemostpopularsimilaritymeasuresimplementationinpythonCaseStudy:SentimentAnalysisonMovieReviewsWillitPython?TextProcessinginMachineLearningHackinganepicNHLgoalcelebrationwithahuelightshowandreal-timemachinelearningVancouverRoomPricesExploringandPredictingUniversityFacultySalariesPredictingAirlineDelays書:CollectionofbooksonredditBuildingMachineLearningSystemswithPythonBuildingMachineLearningSystemswithPython,2ndEditionLearningscikit-learn:MachineLearninginPythonMachineLearningAlgorithmicPerspectiveDataSciencefromScratch–FirstPrincipleswithPythonMachineLearninginPython機器學(xué)習相關(guān)的Blog和課程在線課程:Collectionoflinks.MOOC:machinelearning和DataAnalystNanodegree.

這里是一些Blog.機器學(xué)習理論TheElementsofstatisticalLearningIntroductiontoStatisticalLearning書:IntroductiontomachinelearningACourseinMachineLearning.還有一些Watch15hourstheoryofmachinelearning!越看越懶得翻,著實沒什么營養(yǎng),索性直接列出資源.下面是美國麻省理工學(xué)院(MIT)博士林達華老師(ML大牛)推薦的書單.MachineLearningPatternRecognitionandMachineLearningByChristopherM.Bishop

Anewtreatmentofclassicmachinelearningtopics,suchasclassification,regression,andtimeseriesanalysisfromaBayesianperspective.ItisamustreadforpeoplewhointendstoperformresearchonBayesianlearningandprobabilisticinference.GraphicalModels,ExponentialFamilies,andVariationalInferenceByMartinJ.WainwrightandMichaelI.Jordan

Itisacomprehensiveandbrilliantpresentationofthreecloselyrelatedsubjects:graphicalmodels,exponentialfamilies,andvariationalinference.ThisisthebestmanuscriptthatIhaveeverreadonthissubject.Stronglyrecommendedtoeveryoneinterestedingraphicalmodels.Theconnectionsbetweenvariousinferencealgorithmsandconvexoptimizationisclearlyexplained.Note:pdfversionofthisbookisfreelyavailableonline.BigData:ARevolutionThatWillTransformHowWeLive,Work,andThinkViktorMayer-Schonberger,andKennethCukier

Ashortbutinsightfulmanuscriptthatwillmotivateyoutorethinkhowweshouldfacetheexplosivegrowthofdatainthenewcentury.StatisticalPatternRecognition(2nd/3rdEdition)ByAndrewR.Webb,andKeithD.Copsey

Awellwrittenbookonpatternrecognitionforbeginners.Itcoversbasictopicsinthisfield,includingdiscriminantanalysis,decisiontrees,featureselection,andclustering--allarebasicknowledgethatresearchersinmachinelearningorpatternrecognitionshouldunderstand.LearningwithKernels:SupportVectorMachines,Regularization,Optimization,andBeyondByBernhardSchlkopfandAlexanderJ.Smola

Acomprehensiveandin-depthtreatmentofkernelmethodsandsupportvectormachine.Itnotonlyclearlydevelopsthemathematicalfoundation,namelythereproducingkernelHilbertspace,butalsogivesalotofpracticalguidance(e.g.howtochooseordesignkernels.)MathematicsTopology(2ndEdition)ByJamesMunkres

Aclassicontopologyforbeginners.Itprovidesaclearintroductionofimportantconceptsingeneraltopology,suchascontinuity,connectedness,compactness,andmetricspaces,whicharethefundamentalsthatyouhavetograspedbeforeembarkingonmoreadvancedsubjectssuchasrealanalysis.IntroductoryFunctionalAnalysiswithApplicationsByErwinKreyszig

ItisaverywellwrittenbookonfunctionalanalysisthatIwouldliketorecommendtoeveryonewhowouldliketostudythissubjectforthefirsttime.Startingfromsimplenotionssuchasmetricsandnorms,thebookgraduallyunfoldsthebeautyoffunctionalanalysis,exposingimportanttopicsincludingBanachspaces,Hilbertspaces,andspectraltheorywithareasonabledepthandbreadth.Mostimportantconceptsneededinmachinelearningarecoveredbythisbook.Theexercisesareofgreathelptoreinforceyourunderstanding.RealAnalysisandProbability(CambridgeStudiesinAdvancedMathematics)ByR.M.Dudley

ThisisadensetextthatcombinesRealanalysisandmodernprobabilitytheoryin500+pages.WhatIlikeaboutthisbookisitstreatmentthatemphasizestheinterplaybetweenrealanalysisandprobabilitytheory.Alsotheexpositionofmeasuretheorybasedonsemi-ringsgivesadeepinsightofthealgebraicstructureofmeasures.ConvexOptimizationByStephenBoyd,andLievenVandenberghe

Aclassiconconvexoptimization.EveryonethatIknewwhohadreadthisbooklikedit.Thepresentationstyleisverycomfortableandinspiring,anditassumesonlyminimalprerequisiteonlinearalgebraandcalculus.Stronglyrecommendedforanybeginnersonoptimization.Note:thepdfofthisbookisfreelyavailableontheProf.Boyd'swebsite.NonlinearProgramming(2ndEdition)ByDimitriP.Bersekas

Athoroughtreatmentofnonlinearoptimization.Itcoversgradient-basedtechniques,Lagrangemultipliertheory,andconvexprogramming.PartofthisbookoverlapswithBoyd's.Overall,itgoesdeeperandtakesmoreeffortstoread.IntroductiontoSmoothManifoldsByJohnM.Lee

ThisisthebookthatIusedtolearndifferentialgeometryandLiegrouptheory.Itprovidesadetailedintroductiontobasicsofmoderndifferentialgeometry--manifolds,tangentspaces,andvectorbundles.TheconnectionsbetweenmanifoldtheoryandLiegrouptheoryisalsoclearlyexplained.ItalsocoversDeRhamCohomologyandLiealgebra,whereaudienceisinvitedtodiscoverthebeautybylinkinggeometrywithalgebra.ModernGraphTheoryByBelaBollobas

Itisamoderntreatmentofthisclassicaltheory,whichemphasizestheconnectionswithothermathematicalsubjects--forexample,randomwalksandelectricalnetworks.Ifoundsomemessagesconveyedbythisbookisenlighteningformyresearchonmachinelearningmethods.ProbabilityTheory:AComprehensiveCourse(Universitext)ByAchimKlenke

Thisisacompletecoverageofmodernprobabilitytheory--notonlyincludingtraditionaltopics,suchasmeasuretheory,independence,andconvergencetheorems,butalsointroducingtopicsthataretypicallyintextbooksonstochasticprocesses,suchasMartingales,Markovchains,andBrownianmotion,Poissonprocesses,andStochasticdifferentialequations.Itisrecommendedasthemaintextbookonprobabilitytheory.AFirstCourseinStochasticProcesses(2ndEdition)BySamuelKarlin,andHowardM.Taylor

AclassictextbookonstochasticprocesswhichIthinkareparticularlysuitableforbeginnerswithoutmuchbackgroundonmeasuretheory.Itprovidesacompletecoverageofmanyimportantstochasticprocessesinanintuitiveway.ItsdevelopmentofMarkovprocessesandrenewalprocessesisenlightening.PoissonProcesses(OxfordStudiesinProbability)ByJ.F.C.Kingman

IfyouareinterestedinBayesiannonparametrics,thisisthebookthatyoushoulddefinitelycheckout.Thismanuscriptprovidesanunparalleledintroductiontorandompointprocesses,includingPoissonandCoxprocesses,andtheirdeeptheoreticalconnectionswithcompleterandomness.ProgrammingStructureandInterpretationofComputerPrograms(2ndEdition)ByHaroldAbelson,GeraldJaySussman,andJulieSussman

Timelessclassicthatmustbereadbyallcomputersciencemajors.WhilesometopicsandtheuseofSchemeastheteachinglanguageseemsoddatfirstglance,thepresentationoffundamentalconceptssuchasabstraction,recursion,andmodularityissobeautifulandinsightfulthatyouwouldneverexperiencedelsewhere.ThinkinginC++:IntroductiontoStandardC++(2ndEdition)ByBruceEckel

Whileitiskindofold(writtenin2000),IstillrecommendthisbooktoallbeginnerstolearnC++.Thethoughtsunderlyingobject-orientedprogrammingisveryclearlyexplained.ItalsoprovidesacomprehensivecoverageofC++inawell-tunedpace.EffectiveC++:55SpecificWaystoImproveYourProgramsandDesigns(3rdEdition)ByScottMeyers

TheEffectiveC++seriesbyScottMeyersisamustforanyonewhoisseriousaboutC++programming.Theitems(rules)listedinthisbookconveystheauthor'sdeepunderstandingofbothC++itselfandmodernsoftwareengineeringprinciples.ThiseditionreflectslatestupdatesinC++development,includinggenericprogrammingtheuseofTR1library.AdvancedC++MetaprogrammingByDavideDiGennaro

Likeitorhateit,meta-programminghasplayedanincreasinglyimportantroleinmodernC++development.IfyouaskedwhatisthekeyaspectsthatdistinguishesC++fromallotherlanguages,IwouldsayitistheunparalleledgenericprogrammingcapabilitybasedonC++templates.Thisbooksummarizesthelatestadvancementofmetaprogramminginthepastdecade.IbelieveitwilltaketheplaceofLoki's"ModernC++Design"tobecomethebibleforC++meta-programming.IntroductiontoAlgorithms(2nd/3rdEdition)ByThomasH.Cormen,CharlesE.Leiserson,RonaldL.Rivest,andCliffordStein

Ifyouknownothingaboutalgorithms,youneverunderstandcomputerscience.Thisisbookisdefinitelyaclassiconalgorithmsanddatastructuresthateveryonewhoisseriousaboutcomputersciencemustread.Thiscontentsofthisbookrangesfromelementarytopicssuchasclassicsortingalgorithmsandhashtabletoadvancedtopicssuchasmaximumflow,linearprogramming,andcomputationalgeometry.Itisabookforeveryone.EverytimeIreadit,Ilearnedsomethingnew.DesignPatterns:ElementsofReusableObject-OrientedSoftwareByErichGamma,RichardHelm,RalphJohnson,andJohnVlissides

TextbooksonC++,Java,orotherlanguagestypicallyusetoyexamples(animals,students,etc)toillustratetheconceptofOOP.Thisway,however,doesnotreflectthefullstrengthofobjectorientedprogramming.Thisbook,whichhasbeenwidelyacknowledgedasaclassicinsoftwareengineering,showsyou,viacompellingexamplesdistilledfromrealworldprojects,howspecificOOPpatternscanvastlyimproveyourcode'sreusability

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論