




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆全國大聯(lián)考高考數(shù)學試題模擬卷(3)注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則的虛部是()A. B. C. D.2.方程在區(qū)間內的所有解之和等于()A.4 B.6 C.8 D.103.已知復數(shù)z滿足(其中i為虛數(shù)單位),則復數(shù)z的虛部是()A. B.1 C. D.i4.已知函數(shù),關于的方程R)有四個相異的實數(shù)根,則的取值范圍是(
)A. B. C. D.5.已知向量,,則向量在向量上的投影是()A. B. C. D.6.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.7.一個幾何體的三視圖如圖所示,則該幾何體的表面積為()A. B. C. D.848.設雙曲線的右頂點為,右焦點為,過點作平行的一條漸近線的直線與交于點,則的面積為()A. B. C.5 D.69.已知復數(shù)(1+i)(a+i)為純虛數(shù)(i為虛數(shù)單位),則實數(shù)a=()A.-1 B.1 C.0 D.210.已知雙曲線的實軸長為,離心率為,、分別為雙曲線的左、右焦點,點在雙曲線上運動,若為銳角三角形,則的取值范圍是()A. B. C. D.11.在中,為中點,且,若,則()A. B. C. D.12.設函數(shù)(,為自然對數(shù)的底數(shù)),定義在上的函數(shù)滿足,且當時,.若存在,且為函數(shù)的一個零點,則實數(shù)的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.一個村子里一共有個人,其中一個人是謠言制造者,他編造了一條謠言并告訴了另一個人,這個人又把謠言告訴了第三個人,如此等等.在每一次謠言傳播時,謠言的接受者都是在其余個村民中隨機挑選的,當謠言傳播次之后,還沒有回到最初的造謠者的概率是_______.14.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.15.已知函數(shù),若函數(shù)有個不同的零點,則的取值范圍是___________.16.已知三棱錐的四個頂點都在球O的球面上,,,,,E,F(xiàn)分別為,的中點,,則球O的體積為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為踐行“綠水青山就是金山銀山”的發(fā)展理念和提高生態(tài)環(huán)境的保護意識,高二年級準備成立一個環(huán)境保護興趣小組.該年級理科班有男生400人,女生200人;文科班有男生100人,女生300人.現(xiàn)按男、女用分層抽樣從理科生中抽取6人,按男、女分層抽樣從文科生中抽取4人,組成環(huán)境保護興趣小組,再從這10人的興趣小組中抽出4人參加學校的環(huán)保知識競賽.(1)設事件為“選出的這4個人中要求有兩個男生兩個女生,而且這兩個男生必須文、理科生都有”,求事件發(fā)生的概率;(2)用表示抽取的4人中文科女生的人數(shù),求的分布列和數(shù)學期望.18.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛(wèi)士”活動,并組織全校學生進行法律知識競賽.現(xiàn)從全校學生中隨機抽取50名學生,統(tǒng)計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數(shù)分布表:分數(shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.19.(12分)設數(shù)列是等比數(shù)列,,已知,(1)求數(shù)列的首項和公比;(2)求數(shù)列的通項公式.20.(12分)在三棱錐S-ABC中,∠BAC=∠SBA=∠SCA=90°,∠SAB=45°,∠SAC=60°,D為棱AB的中點,SA=2(I)證明:SD⊥BC;(II)求直線SD與平面SBC所成角的正弦值.21.(12分)已知.(1)若,求函數(shù)的單調區(qū)間;(2)若不等式恒成立,求實數(shù)的取值范圍.22.(10分)已知函數(shù)(1)若對任意恒成立,求實數(shù)的取值范圍;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
通過復數(shù)的乘除運算法則化簡求解復數(shù)為:的形式,即可得到復數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.本題考查復數(shù)的代數(shù)形式的混合運算,復數(shù)的基本概念,屬于基礎題.2.C【解析】
畫出函數(shù)和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數(shù)和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數(shù)關于點中心對稱是解題的關鍵.3.A【解析】
由虛數(shù)單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.本題考查了虛數(shù)單位i的運算性質、復數(shù)的概念,屬于基礎題.4.A【解析】=,當時時,單調遞減,時,單調遞增,且當,當,
當時,恒成立,時,單調遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.5.A【解析】
先利用向量坐標運算求解,再利用向量在向量上的投影公式即得解【詳解】由于向量,故向量在向量上的投影是.故選:A本題考查了向量加法、減法的坐標運算和向量投影的概念,考查了學生概念理解,數(shù)學運算的能力,屬于中檔題.6.A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數(shù)基礎題.7.B【解析】
畫出幾何體的直觀圖,計算表面積得到答案.【詳解】該幾何體的直觀圖如圖所示:故.故選:.本題考查了根據(jù)三視圖求表面積,意在考查學生的計算能力和空間想象能力.8.A【解析】
根據(jù)雙曲線的標準方程求出右頂點、右焦點的坐標,再求出過點與的一條漸近線的平行的直線方程,通過解方程組求出點的坐標,最后利用三角形的面積公式進行求解即可.【詳解】由雙曲線的標準方程可知中:,因此右頂點的坐標為,右焦點的坐標為,雙曲線的漸近線方程為:,根據(jù)雙曲線和漸近線的對稱性不妨設點作平行的一條漸近線的直線與交于點,所以直線的斜率為,因此直線方程為:,因此點的坐標是方程組:的解,解得方程組的解為:,即,所以的面積為:.故選:A本題考查了雙曲線的漸近線方程的應用,考查了兩直線平行的性質,考查了數(shù)學運算能力.9.B【解析】
化簡得到z=a-1+a+1【詳解】z=1+ia+i=a-1+a+1i為純虛數(shù),故a-1=0故選:B.本題考查了根據(jù)復數(shù)類型求參數(shù),意在考查學生的計算能力.10.A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設點在雙曲線右支上運動,則,當時,此時,所以,,所以;當軸時,,所以,又為銳角三角形,所以.故選:A.本題考查雙曲線的性質及其應用,本題的關鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.11.B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結果.【詳解】,,,,,.故選:B.本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎題.12.D【解析】
先構造函數(shù),由題意判斷出函數(shù)的奇偶性,再對函數(shù)求導,判斷其單調性,進而可求出結果.【詳解】構造函數(shù),因為,所以,所以為奇函數(shù),當時,,所以在上單調遞減,所以在R上單調遞減.因為存在,所以,所以,化簡得,所以,即令,因為為函數(shù)的一個零點,所以在時有一個零點因為當時,,所以函數(shù)在時單調遞減,由選項知,,又因為,所以要使在時有一個零點,只需使,解得,所以a的取值范圍為,故選D.本題主要考查函數(shù)與方程的綜合問題,難度較大.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用相互獨立事件概率的乘法公式即可求解.【詳解】第1次傳播,謠言一定不會回到最初的人;從第2次傳播開始,每1次謠言傳播,第一個制造謠言的人被選中的概率都是,沒有被選中的概率是.次傳播是相互獨立的,故為故答案為:本題考查了相互獨立事件概率的乘法公式,考查了考生的分析能力,屬于基礎題.14.【解析】
根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質,利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質的應用,意在考查學生的直觀想象能力,數(shù)學運算能力和邏輯推理能力,屬于較難題.15.【解析】
作出函數(shù)的圖象及直線,如下圖所示,因為函數(shù)有個不同的零點,所以由圖象可知,,,所以.16.【解析】
可證,則為的外心,又則平面即可求出,的值,再由勾股定理求出外接球的半徑,最后根據(jù)體積公式計算可得.【詳解】解:,,,因為為的中點,所以為的外心,因為,所以點在內的投影為的外心,所以平面,平面,所以,所以,又球心在上,設,則,所以,所以球O體積,.故答案為:本題考查多面體外接球體積的求法,考查空間想象能力與思維能力,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析【解析】
(1)按分層抽樣得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超幾何分布求解即可【詳解】(1)因為學生總數(shù)為1000人,該年級分文、理科按男女用分層抽樣抽取10人,則抽取了理科男生4人,女生2人,文科男生1人,女生3人.所以.(2)的可能取值為0,1,2,3,,,,,的分布列為0123.本題考查分層抽樣,考查超幾何分布及期望,考查運算求解能力,是基礎題18.(1)見解析;(2)【解析】
(1)補充完整的列聯(lián)表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值,所以有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關.(2)抽取的5名學生中競賽成績合格的有名學生,記為,競賽成績不合格的有名學生,記為,從這5名學生中隨機抽取2名學生的基本事件有:,共10種,這2名學生競賽成績都合格的基本事件有:,共3種,所以這2名學生競賽成績都合格的概率為.19.(1)(2)【解析】
本題主要考查了等比數(shù)列的通項公式的求解,數(shù)列求和的錯位相減求和是數(shù)列求和中的重點與難點,要注意掌握.(1)設等比數(shù)列{an}的公比為q,則q+q2=6,解方程可求q(2)由(1)可求an=a1?qn-1=2n-1,結合數(shù)列的特點,考慮利用錯位相減可求數(shù)列的和解:(1)(2),兩式相減:20.(I)證明見解析;(II)1【解析】
(I)過D作DE⊥BC于E,連接SE,根據(jù)勾股定理得到SE⊥BC,DE⊥BC得到BC⊥平面SED,得到證明.(II)過點D作DF⊥SE于F,證明DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,計算夾角得到答案.【詳解】(I)過D作DE⊥BC于E,連接SE,根據(jù)角度的垂直關系易知:AC=1,AB=SB=2,CS=CB=3,故DE=BDsin∠CBD=6根據(jù)余弦定理:13+SE2-2故SE⊥BC,DE⊥BC,SE∩DE=E,故BC⊥平面SED,SD?平面SED,故SD⊥BC.(II)過點D作DF⊥SE于F,BC⊥平面SED,DF?平面SED,故DF⊥BC,DF⊥SE,BC∩SE=E,故DF⊥平面SBC,故∠ESD為直線SD與平面SBC所成角,SD2=S故sin∠ESD=本題考查了線線垂直,線面夾角,意在考查學生的計算能力
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)互聯(lián)網(wǎng)平臺5G通信模組2025適配性在智能能源管理系統(tǒng)中的應用前景
- 基于云計算的高速公路智能交通系統(tǒng)平臺構建報告
- 毽球興趣小組活動總結模版
- 上饒市推進義務教育均衡發(fā)展工作總結模版
- 工業(yè)互聯(lián)網(wǎng)數(shù)據(jù)加密算法2025效能評估與產業(yè)發(fā)展趨勢報告
- 腫瘤治療2025:精準醫(yī)療在臨床實踐中的應用與效果對比分析
- 《窗邊的小豆豆》讀書心得體會模版
- 福建省泉州市泉外、東海、七中學、恒興四校2024年中考三模數(shù)學試題含解析
- HR2025年上半年個人工作總結模版
- 曾帥造艦工作總結模版
- 社區(qū)日間照料中心運營方案
- 二年級下冊期末教學質量分析P的課件
- 初中數(shù)學北師大七年級下冊(2023年新編)綜合與實踐綜合與實踐-設計自己的運算程序 王穎
- 北師大版英語八年級下冊 Unit 4 Lesson 11 Online Time 課件(30張PPT)
- 可燃氣體報警系統(tǒng)安裝記錄
- 伸臂式焊接變位機設計總體設計和旋轉減速器設計畢業(yè)設計
- 貝多芬F大調浪漫曲—小提琴譜(帶鋼伴譜)
- 血細胞儀白細胞五分類法原理和散點圖特征
- 形式發(fā)票格式2 INVOICE
- 外墻保溫方案(熱固性改性聚苯板)
- 電子匯劃業(yè)務收費憑證
評論
0/150
提交評論