版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025年安徽省滁州市海亮外國語學校高三高考模擬沖刺卷(提優(yōu)卷)(四)數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知實數(shù),滿足約束條件,則目標函數(shù)的最小值為A. B.C. D.2.已知,,分別為內角,,的對邊,,,的面積為,則()A. B.4 C.5 D.3.已知三點A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點的距離為()A. B.C. D.4.下列函數(shù)中,值域為R且為奇函數(shù)的是()A. B. C. D.5.已知雙曲線的左焦點為,直線經過點且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點,,若,則該雙曲線的離心率為().A. B. C. D.6.《九章算術》是我國古代內容極為豐富的數(shù)學名著,書中有如下問題:“今有芻甍,下廣三丈,袤四丈,上袤二丈,無廣,高二丈,問:積幾何?”其意思為:“今有底面為矩形的屋脊狀的楔體,下底面寬3丈,長4丈,上棱長2丈,高2丈,問:它的體積是多少?”已知l丈為10尺,該楔體的三視圖如圖所示,其中網(wǎng)格紙上小正方形邊長為1,則該楔體的體積為()A.10000立方尺B.11000立方尺C.12000立方尺D.13000立方尺7.將3個黑球3個白球和1個紅球排成一排,各小球除了顏色以外其他屬性均相同,則相同顏色的小球不相鄰的排法共有()A.14種 B.15種 C.16種 D.18種8.已知函數(shù),且關于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍().A. B. C. D.9.已知向量,,若,則()A. B. C. D.10.若不等式對于一切恒成立,則的最小值是()A.0 B. C. D.11.已知角的終邊經過點P(),則sin()=A. B. C. D.12.設全集U=R,集合,則()A.{x|-1<x<4} B.{x|-4<x<1} C.{x|-1≤x≤4} D.{x|-4≤x≤1}二、填空題:本題共4小題,每小題5分,共20分。13.設為偶函數(shù),且當時,;當時,.關于函數(shù)的零點,有下列三個命題:①當時,存在實數(shù)m,使函數(shù)恰有5個不同的零點;②若,函數(shù)的零點不超過4個,則;③對,,函數(shù)恰有4個不同的零點,且這4個零點可以組成等差數(shù)列.其中,正確命題的序號是_______.14.若隨機變量的分布列如表所示,則______,______.-10115.如圖,棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和,并將兩弧各五等分,分點依次為、、、、、以及、、、、、.一只螞蟻欲從點出發(fā),沿正方體的表面爬行至,則其爬行的最短距離為________.參考數(shù)據(jù):;;)16.已知數(shù)列的前項和為,且成等差數(shù)列,,數(shù)列的前項和為,則滿足的最小正整數(shù)的值為______________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓:(),點是的左頂點,點為上一點,離心率.(1)求橢圓的方程;(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經過點,若存在,求出直線的方程;若不存在,說明理由.18.(12分)某工廠,兩條相互獨立的生產線生產同款產品,在產量一樣的情況下通過日常監(jiān)控得知,生產線生產的產品為合格品的概率分別為和.(1)從,生產線上各抽檢一件產品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產線的不合格產品返工后每件產品可分別挽回損失元和元.若從兩條生產線上各隨機抽檢件產品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產線的最終合格品中各隨機抽取件進行檢測,結果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產一件產品的利潤為,求的分布列并估算該廠產量件時利潤的期望值.19.(12分)在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,圓的極坐標方程為.(1)求直線和圓的普通方程;(2)已知直線上一點,若直線與圓交于不同兩點,求的取值范圍.20.(12分)已知函數(shù),曲線在點處的切線方程為.(Ⅰ)求,的值;(Ⅱ)若,求證:對于任意,.21.(12分)已知函數(shù),.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數(shù)的取值范圍.22.(10分)如圖,在平面直角坐標系中,已知圓C:,橢圓E:()的右頂點A在圓C上,右準線與圓C相切.(1)求橢圓E的方程;(2)設過點A的直線l與圓C相交于另一點M,與橢圓E相交于另一點N.當時,求直線l的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
作出不等式組對應的平面區(qū)域,目標函數(shù)的幾何意義為動點到定點的斜率,利用數(shù)形結合即可得到的最小值.【詳解】解:作出不等式組對應的平面區(qū)域如圖:目標函數(shù)的幾何意義為動點到定點的斜率,當位于時,此時的斜率最小,此時.故選B.本題主要考查線性規(guī)劃的應用以及兩點之間的斜率公式的計算,利用z的幾何意義,通過數(shù)形結合是解決本題的關鍵.2.D【解析】
由正弦定理可知,從而可求出.通過可求出,結合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關系.本題的關鍵是通過正弦定理結合已知條件,得到角的正弦值余弦值.3.B【解析】
選B.考點:圓心坐標4.C【解析】
依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域為,非奇非偶函數(shù),排除;B.,值域為,奇函數(shù),排除;C.,值域為,奇函數(shù),滿足;D.,值域為,非奇非偶函數(shù),排除;故選:.本題考查了函數(shù)的值域和奇偶性,意在考查學生對于函數(shù)知識的綜合應用.5.A【解析】
直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點坐標縱坐標關系進行求解即可.【詳解】由題意可知直線的方程為,不妨設.則,且將代入雙曲線方程中,得到設則由,可得,故則,解得則所以雙曲線離心率故選:A此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點坐標關系和已知條件即可求解,屬于一般性題目.6.A【解析】由題意,將楔體分割為三棱柱與兩個四棱錐的組合體,作出幾何體的直觀圖如圖所示:
沿上棱兩端向底面作垂面,且使垂面與上棱垂直,
則將幾何體分成兩個四棱錐和1個直三棱柱,
則三棱柱的體積V1四棱錐的體積V2=13×1×3×2=2【點睛】本題考查三視圖及幾何體體積的計算,其中正確還原幾何體,利用方格數(shù)據(jù)分割與計算是解題的關鍵.7.D【解析】
采取分類計數(shù)和分步計數(shù)相結合的方法,分兩種情況具體討論,一種是黑白依次相間,一種是開始僅有兩個相同顏色的排在一起【詳解】首先將黑球和白球排列好,再插入紅球.情況1:黑球和白球按照黑白相間排列(“黑白黑白黑白”或“白黑白黑白黑”),此時將紅球插入6個球組成的7個空中即可,因此共有2×7=14種;情況2:黑球或白球中僅有兩個相同顏色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此時紅球只能插入兩個相同顏色的球之中,共4種.綜上所述,共有14+4=18種.故選:D本題考查排列組合公式的具體應用,插空法的應用,屬于基礎題8.B【解析】
根據(jù)條件可知方程有且只有一個實根等價于函數(shù)的圖象與直線只有一個交點,作出圖象,數(shù)形結合即可.【詳解】解:因為條件等價于函數(shù)的圖象與直線只有一個交點,作出圖象如圖,由圖可知,,故選:B.本題主要考查函數(shù)圖象與方程零點之間的關系,數(shù)形結合是關鍵,屬于基礎題.9.A【解析】
利用平面向量平行的坐標條件得到參數(shù)x的值.【詳解】由題意得,,,,解得.故選A.本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.10.C【解析】
試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉化為求函數(shù)最值問題,即可得到結論.解:不等式x2+ax+1≥0對一切x∈(0,]成立,等價于a≥-x-對于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點:不等式的應用點評:本題綜合考查了不等式的應用、不等式的解法等基礎知識,考查運算求解能力,考查化歸與轉化思想,屬于中檔題11.A【解析】
由題意可得三角函數(shù)的定義可知:,,則:本題選擇A選項.12.C【解析】
解一元二次不等式求得集合,由此求得【詳解】由,解得或.因為或,所以.故選:C本小題主要考查一元二次不等式的解法,考查集合補集的概念和運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.①②③【解析】
根據(jù)偶函數(shù)的圖象關于軸對稱,利用已知中的條件作出偶函數(shù)的圖象,利用圖象對各個選項進行判斷即可.【詳解】解:當時又因為為偶函數(shù)可畫出的圖象,如下所示:可知當時有5個不同的零點;故①正確;若,函數(shù)的零點不超過4個,即,與的交點不超過4個,時恒成立又當時,在上恒成立在上恒成立由于偶函數(shù)的圖象,如下所示:直線與圖象的公共點不超過個,則,故②正確;對,偶函數(shù)的圖象,如下所示:,使得直線與恰有4個不同的交點點,且相鄰點之間的距離相等,故③正確.故答案為:①②③本題考查函數(shù)方程思想,數(shù)形結合思想,屬于難題.14.【解析】
首先求得a的值,然后利用均值的性質計算均值,最后求得的值,由方差的性質計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質得.本題主要考查分布列的性質,均值的計算公式,方差的計算公式,方差的性質等知識,意在考查學生的轉化能力和計算求解能力.15.【解析】
根據(jù)空間位置關系,將平面旋轉后使得各點在同一平面內,結合角的關系即可求得兩點間距離的三角函數(shù)表達式.根據(jù)所給參考數(shù)據(jù)即可得解.【詳解】棱長為2的正方體中,點分別為棱的中點,以為圓心,1為半徑,分別在面和面內作弧和.將平面繞旋轉至與平面共面的位置,如下圖所示:則,所以;將平面繞旋轉至與平面共面的位置,將繞旋轉至與平面共面的位置,如下圖所示:則,所以;因為,且由誘導公式可得,所以最短距離為,故答案為:.本題考查了空間幾何體中最短距離的求法,注意將空間幾何體展開至同一平面內求解的方法,三角函數(shù)誘導公式的應用,綜合性強,屬于難題.16.1【解析】
本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進行計算可得最小正整數(shù)的值.【詳解】由題意,當時,.當時,.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)存在,【解析】
(1)把點代入橢圓C的方程,再結合離心率,可得a,b,c的關系,可得橢圓的方程;(2)設出直線的方程,代入橢圓,運用韋達定理可求得點的坐標,再由,可求得直線的方程,要注意檢驗直線是否和橢圓有兩個交點.【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設,直線的斜率存在設為,則與橢圓聯(lián)立得,,∴,,∴若以為直徑的圓經過點,則,∴,化簡得,∴,解得或因為與不重合,所以舍.所以直線的方程為.本題考查橢圓的簡單性質,考查直線與橢圓位置關系的應用,考查了向量的數(shù)量積的運用,屬于中檔題.18.(1)(2)①生產線上挽回的損失較多.②見解析【解析】
(1)由題意得到關于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學期望的性質給出結論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設從,生產線上各抽檢一件產品,至少有一件合格為事件,設從,生產線上抽到合格品分別為事件,,則,互為獨立事件由已知有,則解得,則的最小值(2)由(1)知,生產線的合格率分別為和,即不合格率分別為和.①設從,生產線上各抽檢件產品,抽到不合格產品件數(shù)分別為,,則有,,所以,生產線上挽回損失的平均數(shù)分別為:,所以生產線上挽回的損失較多.②由已知得的可能取值為,,,用樣本估計總體,則有,,所以的分布列為所以(元)故估算估算該廠產量件時利潤的期望值為(元)本題主要考查概率公式的應用,二項分布的性質與方差的求解,離散型隨機變量及其分布列的求解等知識,意在考查學生的轉化能力和計算求解能力.19.(1),;(2)【解析】分析:(1)用代入法消參數(shù)可得直線的普通方程,由公式可化極坐標方程為直角坐標方程;(2)把直線的參數(shù)方程代入曲線的直角坐標方程,其中參數(shù)的絕對值表示直線上對應點到的距離,因此有,,直接由韋達定理可得,注意到直線與圓相交,因此判別式>0,這樣可得滿足的不等關系,由此可求得的取值范圍.詳解:(1)直線的參數(shù)方程為,普通方程為,將代入圓的極坐標方程中,可得圓的普通方程為,(2)解:直線的參數(shù)方程為代入圓的方程為可得:(*),且由題意,,.因為方程(*)有兩個不同的實根,所以,即,又,所以.因為,所以所以.點睛:(1)參數(shù)方程化為普通方程,一般用消參數(shù)法,而消參法有兩種選擇:一是代入法,二是用公式;(2)極坐標方程與直角坐標方程互化一般利用公式;(3)過的直線的參數(shù)方程為(為參數(shù))中參數(shù)具有幾何意義:直線上任一點對應參數(shù),則.20.(Ⅰ),(Ⅱ)見解析【解析】
(1)根據(jù)導數(shù)的運算法則,求出函數(shù)的導數(shù),利用切線方程求出切線的斜率及切點,利用函數(shù)在切點處的導數(shù)值為曲線切線的斜率及切點也在曲線上,列出方程組,求出,值;(2)首先將不等式轉化為函數(shù),即將不等式右邊式子左移,得,構造函數(shù)并判斷其符號,這里應注意的取值范圍,從而證明不等式.【詳解】解:(1)由于直線的斜率為,且過點,故即解得,.(2)由(1)知,所以.考慮函數(shù),,則.而,故當時,,所以,即.本題考查了利用導數(shù)求切線的斜率,利用函數(shù)的導數(shù)研究函數(shù)的單調性、和最值問題,以及不等式證明問題,考查了分析及解決問題的能力,其中,不等式問題中結合構造函數(shù)實現(xiàn)正確轉換為最大值和最小值問題是關鍵.21.(1);(2)【解析】
(1)對函數(shù)求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構造函數(shù),對函數(shù)求導,討論和0的大小關系,結合單調性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度安徽公司二零二五氨水集中采購合同3篇
- 2024年版公司股東權益保障協(xié)議版B版
- 2025年度林地生態(tài)環(huán)境治理合同范本3篇
- 2024年酒店整體出租協(xié)議文本
- 2024年高速鐵路隧道工程合同
- 2024年美甲師雇傭協(xié)議
- 2024年高級木材門購銷協(xié)議XXX一
- 2024年飲用水安全知識普及與工程實施二零二四年度合同3篇
- 2024年特許經營合同與勞動合同3篇
- 2024年采購合同產品質量驗收及售后服務協(xié)議
- 護理實習針灸科出科小結
- 2024年二級造價師題庫(鞏固)
- 業(yè)主與物業(yè)公司調解協(xié)議書
- 師德師風防性侵知識講座
- 寫字樓項目風險評估報告
- 庫存周轉率與庫存周轉天數(shù)
- 絕緣子鹽密、灰密試驗
- 農業(yè)信息感知與傳輸技術
- 燃氣泄漏預警系統(tǒng)設計
- 腸易激綜合癥
- 設備采購 投標方案(技術方案)
評論
0/150
提交評論