江蘇省南通市如東縣2021-2022學年中考數(shù)學全真模擬試卷含解析_第1頁
江蘇省南通市如東縣2021-2022學年中考數(shù)學全真模擬試卷含解析_第2頁
江蘇省南通市如東縣2021-2022學年中考數(shù)學全真模擬試卷含解析_第3頁
江蘇省南通市如東縣2021-2022學年中考數(shù)學全真模擬試卷含解析_第4頁
江蘇省南通市如東縣2021-2022學年中考數(shù)學全真模擬試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南通市如東縣2021-2022學年中考數(shù)學全真模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.一次函數(shù)與二次函數(shù)在同一平面直角坐標系中的圖像可能是()A. B. C. D.2.如圖,直線被直線所截,,下列條件中能判定的是()A. B. C. D.3.有四包真空包裝的火腿腸,每包以標準質(zhì)量450g為基準,超過的克數(shù)記作正數(shù),不足的克數(shù)記作負數(shù).下面的數(shù)據(jù)是記錄結(jié)果,其中與標準質(zhì)量最接近的是()A.+2 B.﹣3 C.+4 D.﹣14.下面四個幾何體:其中,俯視圖是四邊形的幾何體個數(shù)是()A.1 B.2 C.3 D.45.已知一元二次方程x2-8x+15=0的兩個解恰好分別是等腰△ABC的底邊長和腰長,則△ABC的周長為()A.13 B.11或13 C.11 D.126.如圖,直線AB∥CD,∠A=70°,∠C=40°,則∠E等于()A.30° B.40°C.60° D.70°7.如圖是由5個相同的正方體搭成的幾何體,其左視圖是()A. B.C. D.8.sin45°的值等于()A. B.1 C. D.9.點A(m﹣4,1﹣2m)在第四象限,則m的取值范圍是()A.m> B.m>4C.m<4 D.<m<410.若等式x2+ax+19=(x﹣5)2﹣b成立,則a+b的值為()A.16 B.﹣16 C.4 D.﹣411.將三粒均勻的分別標有,,,,,的正六面體骰子同時擲出,朝上一面上的數(shù)字分別為,,,則,,正好是直角三角形三邊長的概率是()A. B. C. D.12.如圖,將△ABC沿著點B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距離為6,則陰影部分面積為()A.42 B.96 C.84 D.48二、填空題:(本大題共6個小題,每小題4分,共24分.)13.為了節(jié)約用水,某市改進居民用水設施,在2017年幫助居民累計節(jié)約用水305000噸,將數(shù)字305000用科學記數(shù)法表示為________.14.對于任意不相等的兩個實數(shù),定義運算※如下:※=,如3※2==.那么8※4=.15.計算:cos245°-tan30°sin60°=______.16.如圖,線段AB=10,點P在線段AB上,在AB的同側(cè)分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.17.(2017黑龍江省齊齊哈爾市)如圖,在等腰三角形紙片ABC中,AB=AC=10,BC=12,沿底邊BC上的高AD剪成兩個三角形,用這兩個三角形拼成平行四邊形,則這個平行四邊形較長的對角線的長是______.18.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數(shù)y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)在平面直角坐標系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A′OB′,點A、B旋轉(zhuǎn)后的對應點為A′、B′,記旋轉(zhuǎn)角為α.(I)如圖1,若α=30°,求點B′的坐標;(Ⅱ)如圖2,若0°<α<90°,設直線AA′和直線BB′交于點P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結(jié)果即可).20.(6分)九年級學生到距離學校6千米的百花公園去春游,一部分學生步行前往,20分鐘后另一部分學生騎自行車前往,設(分鐘)為步行前往的學生離開學校所走的時間,步行學生走的路程為千米,騎自行車學生騎行的路程為千米,關于的函數(shù)圖象如圖所示.(1)求關于的函數(shù)解析式;(2)步行的學生和騎自行車的學生誰先到達百花公園,先到了幾分鐘?21.(6分)在大課間活動中,體育老師隨機抽取了七年級甲、乙兩班部分女學生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和統(tǒng)計圖,請你根據(jù)圖表中的信息完成下列問題:分組頻數(shù)頻率第一組(0≤x<15)30.15第二組(15≤x<30)6a第三組(30≤x<45)70.35第四組(45≤x<60)b0.20(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計圖補充完整;如果該校七年級共有女生180人,估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有多少人?已知第一組中只有一個甲班學生,第四組中只有一個乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?22.(8分)如圖,在平面直角坐標系中,拋物線y=ax2+bx+c的頂點坐標為P(2,9),與x軸交于點A,B,與y軸交于點C(0,5).(Ⅰ)求二次函數(shù)的解析式及點A,B的坐標;(Ⅱ)設點Q在第一象限的拋物線上,若其關于原點的對稱點Q′也在拋物線上,求點Q的坐標;(Ⅲ)若點M在拋物線上,點N在拋物線的對稱軸上,使得以A,C,M,N為頂點的四邊形是平行四邊形,且AC為其一邊,求點M,N的坐標.23.(8分)某班為確定參加學校投籃比賽的任選,在A、B兩位投籃高手間進行了6次投籃比賽,每人每次投10個球,將他們每次投中的個數(shù)繪制成如圖所示的折線統(tǒng)計圖.(1)根據(jù)圖中所給信息填寫下表:投中個數(shù)統(tǒng)計平均數(shù)中位數(shù)眾數(shù)A8B77(2)如果這個班只能在A、B之間選派一名學生參賽,從投籃穩(wěn)定性考慮應該選派誰?請你利用學過的統(tǒng)計量對問題進行分析說明.24.(10分)如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標;(2)將△ABC沿x軸的正方向平移,在第一象限內(nèi)B、C兩點的對應點B'、C'正好落在某反比例函數(shù)圖象上.請求出這個反比例函數(shù)和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數(shù)記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內(nèi)當y1<y2時x的取值范圍.25.(10分)已知:如圖,∠ABC,射線BC上一點D.求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內(nèi)部,且點P到∠ABC兩邊的距離相等.26.(12分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側(cè)),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯(lián)結(jié)DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.27.(12分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A(﹣1,0)和點B,與y軸交于C(0,3),直線y=+m經(jīng)過點C,與拋物線的另一交點為點D,點P是直線CD上方拋物線上的一個動點,過點P作PF⊥x軸于點F,交直線CD于點E,設點P的橫坐標為m.(1)求拋物線解析式并求出點D的坐標;(2)連接PD,△CDP的面積是否存在最大值?若存在,請求出面積的最大值;若不存在,請說明理由;(3)當△CPE是等腰三角形時,請直接寫出m的值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

本題可先由一次函數(shù)y=ax+c圖象得到字母系數(shù)的正負,再與二次函數(shù)y=ax2+bx+c的圖象相比較看是否一致.【詳解】A、一次函數(shù)y=ax+c與y軸交點應為(0,c),二次函數(shù)y=ax2+bx+c與y軸交點也應為(0,c),圖象不符合,故本選項錯誤;B、由拋物線可知,a>0,由直線可知,a<0,a的取值矛盾,故本選項錯誤;C、由拋物線可知,a<0,由直線可知,a>0,a的取值矛盾,故本選項錯誤;D、由拋物線可知,a<0,由直線可知,a<0,且拋物線與直線與y軸的交點相同,故本選項正確.故選D.【點睛】本題考查拋物線和直線的性質(zhì),用假設法來搞定這種數(shù)形結(jié)合題是一種很好的方法.2、C【解析】試題解析:A、由∠3=∠2=35°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;B、由∠3=∠2=45°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;C、由∠3=∠2=55°,∠1=55°推知∠1=∠3,故能判定AB∥CD,故本選項正確;D、由∠3=∠2=125°,∠1=55°推知∠1≠∠3,故不能判定AB∥CD,故本選項錯誤;故選C.3、D【解析】試題解析:因為|+2|=2,|-3|=3,|+4|=4,|-1|=1,由于|-1|最小,所以從輕重的角度看,質(zhì)量是-1的工件最接近標準工件.故選D.4、B【解析】試題分析:根據(jù)俯視圖是分別從物體上面看,所得到的俯視圖是四邊形的幾何體有正方體和三棱柱,故選B.考點:簡單幾何體的三視圖5、B【解析】試題解析:x2-8x+15=0,分解因式得:(x-3)(x-5)=0,可得x-3=0或x-5=0,解得:x1=3,x2=5,若3為底邊,5為腰時,三邊長分別為3,5,5,周長為3+5+5=1;若3為腰,5為底邊時,三邊長分別為3,3,5,周長為3+3+5=11,綜上,△ABC的周長為11或1.故選B.考點:1.解一元二次方程-因式分解法;2.三角形三邊關系;3.等腰三角形的性質(zhì).6、A【解析】

∵AB∥CD,∠A=70°,∴∠1=∠A=70°,∵∠1=∠C+∠E,∠C=40°,∴∠E=∠1﹣∠C=70°﹣40°=30°.故選A.7、A【解析】

根據(jù)三視圖的定義即可判斷.【詳解】根據(jù)立體圖可知該左視圖是底層有2個小正方形,第二層左邊有1個小正方形.故選A.【點睛】本題考查三視圖,解題的關鍵是根據(jù)立體圖的形狀作出三視圖,本題屬于基礎題型.8、D【解析】

根據(jù)特殊角的三角函數(shù)值得出即可.【詳解】解:sin45°=,故選:D.【點睛】本題考查了特殊角的三角函數(shù)的應用,能熟記特殊角的三角函數(shù)值是解此題的關鍵,難度適中.9、B【解析】

根據(jù)第四象限內(nèi)點的橫坐標是正數(shù),縱坐標是負數(shù)列出不等式組,然后求解即可.【詳解】解:∵點A(m-1,1-2m)在第四象限,

∴解不等式①得,m>1,

解不等式②得,m>所以,不等式組的解集是m>1,

即m的取值范圍是m>1.

故選B.【點睛】本題考查各象限內(nèi)點的坐標的符號特征以及解不等式,記住各象限內(nèi)點的坐標的符號是解決的關鍵,四個象限的符號特點分別是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【解析】分析:已知等式利用完全平方公式整理后,利用多項式相等的條件求出a與b的值,即可求出a+b的值.詳解:已知等式整理得:x2+ax+19=(x-5)2-b=x2-10x+25-b,可得a=-10,b=6,則a+b=-10+6=-4,故選D.點睛:此題考查了完全平方公式,熟練掌握完全平方公式是解本題的關鍵.11、C【解析】

三粒均勻的正六面體骰子同時擲出共出現(xiàn)216種情況,而邊長能構成直角三角形的數(shù)字為3、4、5,含這三個數(shù)字的情況有6種,故由概率公式計算即可.【詳解】解:因為將三粒均勻的分別標有1,2,3,4,5,6的正六面體骰子同時擲出,按出現(xiàn)數(shù)字的不同共=216種情況,其中數(shù)字分別為3,4,5,是直角三角形三邊長時,有6種情況,所以其概率為,故選C.【點睛】本題考查的是概率的求法.如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.邊長為3,4,5的三角形組成直角三角形.12、D【解析】

由平移的性質(zhì)知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四邊形ODFC=S梯形ABEO=(AB+OE)?BE=(10+6)×6=1.故選D.【點睛】本題考查平移的性質(zhì),平移前后兩個圖形大小,形狀完全相同,圖形上的每個點都平移了相同的距離,對應點之間的距離就是平移的距離.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】試題解析:305000用科學記數(shù)法表示為:故答案為14、【解析】

根據(jù)新定義的運算法則進行計算即可得.【詳解】∵※=,∴8※4=,故答案為.15、0【解析】

直接利用特殊角的三角函數(shù)值代入進而得出答案.【詳解】=.故答案為0.【點睛】此題主要考查了特殊角的三角函數(shù)值,正確記憶相關數(shù)據(jù)是解題關鍵.16、2【解析】

設MN=y,PC=x,根據(jù)正方形的性質(zhì)和勾股定理列出y1關于x的二次函數(shù)關系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質(zhì)、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關鍵.17、10,,.【解析】解:如圖,過點A作AD⊥BC于點D,∵△ABC邊AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如圖①所示:可得四邊形ACBD是矩形,則其對角線長為:10;如圖②所示:AD=8,連接BC,過點C作CE⊥BD于點E,則EC=8,BE=2BD=12,則BC=;如圖③所示:BD=6,由題意可得:AE=6,EC=2BE=16,故AC==.故答案為10,,.18、1.【解析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標是(b,0),設A的坐標是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數(shù)綜合題,用到的知識點有:一次函數(shù)的平移規(guī)律,一次函數(shù)與反比例函數(shù)的交點坐標,利用了轉(zhuǎn)化及方程的思想,其中利用平移的規(guī)律表示出y=x平移后的解析式是解答本題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)B'的坐標為(,3);(1)見解析;(3)﹣1.【解析】

(1)設A'B'與x軸交于點H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點M(1,),連接MP,由∠APB=90°,推出點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,),所以當PM⊥x軸時,點P縱坐標的最小值為﹣1.【詳解】(Ⅰ)如圖1,設A'B'與x軸交于點H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點B'的坐標為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內(nèi)角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點P縱坐標的最小值為.如圖,作AB的中點M(1,),連接MP,∵∠APB=90°,∴點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,).∴當PM⊥x軸時,點P縱坐標的最小值為﹣1.【點睛】本題考查的知識點是幾何變換綜合題,解題的關鍵是熟練的掌握幾何變換綜合題.20、;(2)騎自行車的學生先到達百花公園,先到了10分鐘.【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得關于的函數(shù)解析式;(2)根據(jù)函數(shù)圖象中的數(shù)據(jù)和題意可以分別求得步行學生和騎自行車學生到達百花公園的時間,從而可以解答本題.【詳解】解:(1)設關于的函數(shù)解析式是,,得,即關于的函數(shù)解析式是;(2)由圖象可知,步行的學生的速度為:千米/分鐘,步行同學到達百花公園的時間為:(分鐘),當時,,得,,答:騎自行車的學生先到達百花公園,先到了10分鐘.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.21、0.34【解析】

(1)由統(tǒng)計圖易得a與b的值,繼而將統(tǒng)計圖補充完整;(2)利用用樣本估計總體的知識求解即可求得答案;(3)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與所選兩人正好都是甲班學生的情況,再利用概率公式即可求得答案.【詳解】(1)a=1﹣0.15﹣0.35﹣0.20=0.3;∵總?cè)藬?shù)為:3÷0.15=20(人),∴b=20×0.20=4(人);故答案為0.3,4;補全統(tǒng)計圖得:(2)估計仰臥起坐能夠一分鐘完成30或30次以上的女學生有:180×(0.35+0.20)=99(人);(3)畫樹狀圖得:∵共有12種等可能的結(jié)果,所選兩人正好都是甲班學生的有3種情況,∴所選兩人正好都是甲班學生的概率是:=.【點睛】本題考查了列表法或樹狀圖法求概率以及條形統(tǒng)計圖的知識.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.22、(1)y=﹣x2+4x+5,A(﹣1,0),B(5,0);(2)Q(,4);(3)M(1,8),N(2,13)或M′(3,8),N′(2,3).【解析】

(1)設頂點式,再代入C點坐標即可求解解析式,再令y=0可求解A和B點坐標;(2)設點Q(m,﹣m2+4m+5),則其關于原點的對稱點Q′(﹣m,m2﹣4m﹣5),再將Q′坐標代入拋物線解析式即可求解m的值,同時注意題干條件“Q在第一象限的拋物線上”;(3)利用平移AC的思路,作MK⊥對稱軸x=2于K,使MK=OC,分M點在對稱軸左邊和右邊兩種情況分類討論即可.【詳解】(Ⅰ)設二次函數(shù)的解析式為y=a(x﹣2)2+9,把C(0,5)代入得到a=﹣1,∴y=﹣(x﹣2)2+9,即y=﹣x2+4x+5,令y=0,得到:x2﹣4x﹣5=0,解得x=﹣1或5,∴A(﹣1,0),B(5,0).(Ⅱ)設點Q(m,﹣m2+4m+5),則Q′(﹣m,m2﹣4m﹣5).把點Q′坐標代入y=﹣x2+4x+5,得到:m2﹣4m﹣5=﹣m2﹣4m+5,∴m=或(舍棄),∴Q(,).(Ⅲ)如圖,作MK⊥對稱軸x=2于K.①當MK=OA,NK=OC=5時,四邊形ACNM是平行四邊形.∵此時點M的橫坐標為1,∴y=8,∴M(1,8),N(2,13),②當M′K=OA=1,KN′=OC=5時,四邊形ACM′N′是平行四邊形,此時M′的橫坐標為3,可得M′(3,8),N′(2,3).【點睛】本題主要考查了二次函數(shù)的應用,第3問中理解通過平移AC可應用“一組對邊平行且相等”得到平行四邊形.23、(1)7,9,7;(2)應該選派B;【解析】

(1)分別利用平均數(shù)、中位數(shù)、眾數(shù)分析得出答案;(2)利用方差的意義分析得出答案.【詳解】(1)A成績的平均數(shù)為(9+10+4+3+9+7)=7;眾數(shù)為9;B成績排序后為6,7,7,7,7,8,故中位數(shù)為7;故答案為:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;從方差看,B的方差小,所以B的成績更穩(wěn)定,從投籃穩(wěn)定性考慮應該選派B.【點睛】此題主要考查了中位數(shù)、眾數(shù)、方差的定義,方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越??;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.24、(1)C(﹣3,2);(2)y1=,y2=﹣x+3;(3)3<x<1.【解析】分析:(1)過點C作CN⊥x軸于點N,由已知條件證Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3結(jié)合點C在第二象限即可得到點C的坐標;(2)設△ABC向右平移了c個單位,則結(jié)合(1)可得點C′,B′的坐標分別為(﹣3+c,2)、(c,1),再設反比例函數(shù)的解析式為y1=,將點C′,B′的坐標代入所設解析式即可求得c的值,由此即可得到點C′,B′的坐標,這樣用待定系數(shù)法即可求得兩個函數(shù)的解析式了;(3)結(jié)合(2)中所得點C′,B′的坐標和圖象即可得到本題所求答案.詳解:(1)作CN⊥x軸于點N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵點C在第二象限,∴C(﹣3,2);(2)設△ABC沿x軸的正方向平移c個單位,則C′(﹣3+c,2),則B′(c,1),設這個反比例函數(shù)的解析式為:y1=,又點C′和B′在該比例函數(shù)圖象上,把點C′和B′的坐標分別代入y1=,得﹣1+2c=c,解得c=1,即反比例函數(shù)解析式為y1=,此時C′(3,2),B′(1,1),設直線B′C′的解析式y(tǒng)2=mx+n,∵,∴,∴直線C′B′的解析式為y2=﹣x+3;(3)由圖象可知反比例函數(shù)y1和此時的直線B′C′的交點為C′(3,2),B′(1,1),∴若y1<y2時,則3<x<1.點睛:本題是一道綜合考查“全等三角形”、“一次函數(shù)”、“反比例函數(shù)”和“平移的性質(zhì)”的綜合題,解題的關鍵是:(1)通過作如圖所示的輔助線,構造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性質(zhì)結(jié)合點B、C的坐標表達出點C′和B′的坐標,由點C′和B′都在反比例函數(shù)的圖象上列出方程,解方程可得點C′和B′的坐標,從而使問題得到解決.25、作圖見解析.【解析】

由題意可知,先作出∠ABC的平分線,再作出線段BD的垂直平分線,交點即是P點.【詳解】∵點P到∠ABC兩邊的距離相等,∴點P在∠ABC的平分線上;∵線段BD為等腰△PBD的底邊,∴PB=PD,∴點P在線段BD的垂直平分線上,∴點P是∠ABC的平分線與線段BD的垂直平分線的交點,如圖所示:【點睛】此題主要考查了尺規(guī)作圖,正確把握角平分線的性質(zhì)和線段垂直平分線的性質(zhì)是解題的關鍵.26、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】

(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論