吉林省輝南縣2025年新初三起點調研測試數(shù)學試題試卷含解析_第1頁
吉林省輝南縣2025年新初三起點調研測試數(shù)學試題試卷含解析_第2頁
吉林省輝南縣2025年新初三起點調研測試數(shù)學試題試卷含解析_第3頁
吉林省輝南縣2025年新初三起點調研測試數(shù)學試題試卷含解析_第4頁
吉林省輝南縣2025年新初三起點調研測試數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省輝南縣2025年新初三起點調研測試數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.對假命題“任何一個角的補角都不小于這個角”舉反例,正確的反例是()A.∠α=60°,∠α的補角∠β=120°,∠β>∠αB.∠α=90°,∠α的補角∠β=90°,∠β=∠αC.∠α=100°,∠α的補角∠β=80°,∠β<∠αD.兩個角互為鄰補角2.對于不等式組,下列說法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個整數(shù)解D.此不等式組無解3.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,點CE=1,AC=4,則下列結論一定正確的個數(shù)是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個4.甲乙兩同學均從同一本書的第一頁開始,按照順序逐頁依次在每頁上寫一個數(shù),甲同學在第1頁寫1,第2頁寫3,第3頁寫1,……,每一頁寫的數(shù)均比前一頁寫的數(shù)多2;乙同學在第1頁寫1,第2頁寫6,第3頁寫11,……,每一頁寫的數(shù)均比前一頁寫的數(shù)多1.若甲同學在某一頁寫的數(shù)為49,則乙同學在這一頁寫的數(shù)為()A.116 B.120 C.121 D.1265.如圖,已知數(shù)軸上的點A、B表示的實數(shù)分別為a,b,那么下列等式成立的是()A. B.C. D.6.下列實數(shù)中,最小的數(shù)是()A. B. C.0 D.7.《九章算術》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1,圖2所示,圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應的常數(shù)項.把圖1表示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是.類似地,圖2所示的算籌圖我們可以表述為()A. B. C. D.8.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.29.下列事件中是必然事件的是()A.早晨的太陽一定從東方升起B(yǎng).中秋節(jié)的晚上一定能看到月亮C.打開電視機,正在播少兒節(jié)目D.小紅今年14歲,她一定是初中學生10.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.1017年11月7日,山西省人民政府批準發(fā)布的《山西省第一次全國地理國情普查公報》顯示,山西省國土面積約為156700km1,該數(shù)據用科學記數(shù)法表示為__________km1.12.函數(shù)y=中自變量x的取值范圍是_____.13.分解因式:2x2-8x+8=__________.14.在比例尺為1:50000的地圖上,量得甲、乙兩地的距離為12厘米,則甲、乙兩地的實際距離是______千米.15.因式分解:mn(n﹣m)﹣n(m﹣n)=_____.16.已知同一個反比例函數(shù)圖象上的兩點、,若,且,則這個反比例函數(shù)的解析式為______.三、解答題(共8題,共72分)17.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調運方案;經過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調動方案.18.(8分)如圖,矩形ABCD的對角線AC、BD交于點O,且DE∥AC,CE∥BD.(1)求證:四邊形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面積.19.(8分)化簡求值:,其中x是不等式組的整數(shù)解.20.(8分)讀詩詞解題:(通過列方程式,算出周瑜去世時的年齡)大江東去浪淘盡,千古風流數(shù)人物;而立之年督東吳,早逝英年兩位數(shù);十位恰小個位三,個位平方與壽符;哪位學子算得快,多少年華屬周瑜?21.(8分)(7分)某中學1000名學生參加了”環(huán)保知識競賽“,為了了解本次競賽成績情況,從中抽取了部分學生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據).請解答下列問題:成績分組頻數(shù)頻率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合計■1(1)寫出a,b,c的值;(2)請估計這1000名學生中有多少人的競賽成績不低于70分;(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學參加環(huán)保知識宣傳活動,求所抽取的2名同學來自同一組的概率.22.(10分)綜合與實踐:概念理解:將△ABC繞點A按逆時針方向旋轉,旋轉角記為θ(0°≤θ≤90°),并使各邊長變?yōu)樵瓉淼膎倍,得到△AB′C′,如圖,我們將這種變換記為[θ,n],:.問題解決:(2)如圖,在△ABC中,∠BAC=30°,∠ACB=90°,對△ABC作變換[θ,n]得到△AB′C′,使點B,C,C′在同一直線上,且四邊形ABB′C′為矩形,求θ和n的值.拓廣探索:(3)在△ABC中,∠BAC=45°,∠ACB=90°,對△ABC作變換得到△AB′C′,則四邊形ABB′C′為正方形23.(12分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數(shù).()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)24.在“傳箴言”活動中,某班團支部對該班全體團員在一個月內所發(fā)箴言條數(shù)的情況進行了統(tǒng)計,并制成了如圖所示的兩幅不完整的統(tǒng)計圖:求該班團員在這一個月內所發(fā)箴言的平均條數(shù)是多少?并將該條形統(tǒng)計圖補充完整;如果發(fā)了3條箴言的同學中有兩位男同學,發(fā)了4條箴言的同學中有三位女同學.現(xiàn)要從發(fā)了3條箴言和4條箴言的同學中分別選出一位參加該校團委組織的“箴言”活動總結會,請你用列表法或樹狀圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】熟記反證法的步驟,然后進行判斷即可.

解答:解:舉反例應該是證明原命題不正確,即要舉出不符合敘述的情況;

A、∠α的補角∠β>∠α,符合假命題的結論,故A錯誤;

B、∠α的補角∠β=∠α,符合假命題的結論,故B錯誤;

C、∠α的補角∠β<∠α,與假命題結論相反,故C正確;

D、由于無法說明兩角具體的大小關系,故D錯誤.

故選C.2、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問題的關鍵在于正確解得不等式組或不等式的解集,然后再根據題目中對于解集的限制得到下一步所需要的條件,再根據得到的條件進而求得不等式組的整數(shù)解.3、D【解析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.4、C【解析】

根據題意確定出甲乙兩同學所寫的數(shù)字,設甲所寫的第n個數(shù)為49,根據規(guī)律確定出n的值,即可確定出乙在該頁寫的數(shù).【詳解】甲所寫的數(shù)為1,3,1,7,…,49,…;乙所寫的數(shù)為1,6,11,16,…,設甲所寫的第n個數(shù)為49,根據題意得:49=1+(n﹣1)×2,整理得:2(n﹣1)=48,即n﹣1=24,解得:n=21,則乙所寫的第21個數(shù)為1+(21﹣1)×1=1+24×1=121,故選:C.考查了有理數(shù)的混合運算,弄清題中的規(guī)律是解本題的關鍵.5、B【解析】

根據圖示,可得:b<0<a,|b|>|a|,據此判斷即可.【詳解】∵b<0<a,|b|>|a|,

∴a+b<0,

∴|a+b|=-a-b.

故選B.此題主要考查了實數(shù)與數(shù)軸的特征和應用,以及絕對值的含義和求法,要熟練掌握.6、B【解析】

根據正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小,進行比較.【詳解】∵<-2<0<,∴最小的數(shù)是-π,故選B.此題主要考查了比較實數(shù)的大小,要熟練掌握任意兩個實數(shù)比較大小的方法.(1)正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而?。?)利用數(shù)軸也可以比較任意兩個實數(shù)的大小,即在數(shù)軸上表示的兩個實數(shù),右邊的總比左邊的大,在原點左側,絕對值大的反而?。?、A【解析】

根據圖形,結合題目所給的運算法則列出方程組.【詳解】圖2所示的算籌圖我們可以表述為:.故選A.本題考查了由實際問題抽象出二元一次方程組,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程組.8、B【解析】本題考查的圓與直線的位置關系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.9、A【解析】

必然事件就是一定發(fā)生的事件,即發(fā)生的概率是1的事件,依據定義即可求解.【詳解】解:B、C、D選項為不確定事件,即隨機事件.故錯誤;

一定發(fā)生的事件只有第一個答案,早晨的太陽一定從東方升起.故選A.該題考查的是對必然事件的概念的理解;必然事件就是一定發(fā)生的事件.10、D【解析】

本題關鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.本題考查了平面圖形在實際生活中的應用,有良好的空間想象能力過動手能力是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、1.267×102【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值是易錯點,由于126700有6位,所以可以確定n=6﹣1=2.【詳解】解:126700=1.267×102.故答案為1.267×102.此題考查科學記數(shù)法表示較大的數(shù)的方法,準確確定a與n值是關鍵.12、x≥﹣且x≠1.【解析】

根據分式有意義的條件、二次根式有意義的條件列式計算.【詳解】由題意得,2x+3≥0,x-1≠0,解得,x≥-且x≠1,故答案為:x≥-且x≠1.本題考查的是函數(shù)自變量的取值范圍,①當表達式的分母不含有自變量時,自變量取全體實數(shù).②當表達式的分母中含有自變量時,自變量取值要使分母不為零.③當函數(shù)的表達式是偶次根式時,自變量的取值范圍必須使被開方數(shù)不小于零.13、2(x-2)2【解析】

先運用提公因式法,再運用完全平方公式.【詳解】:2x2-8x+8=.故答案為2(x-2)2.本題考核知識點:因式分解.解題關鍵點:熟練掌握分解因式的基本方法.14、【解析】

本題可根據比例線段進行求解.【詳解】解:因為在比例尺為1:50000的地圖上甲,乙兩地的距離12cm,所以,甲、乙的實際距離x滿足12:x=1:50000,即x=12=600000cm=6km.故答案為6.本題主要考查比例尺和比例線段的相關知識.15、【解析】mn(n-m)-n(m-n)=mn(n-m)+n(n-m)=n(n-m)(m+1),故答案為n(n-m)(m+1).16、y=【解析】解:設這個反比例函數(shù)的表達式為y=.∵P1(x1,y1),P2(x2,y2)是同一個反比例函數(shù)圖象上的兩點,∴x1y1=x2y2=k,∴==,∴﹣=,∴=,∴=,∴k=2(x2﹣x1).∵x2=x1+2,∴x2﹣x1=2,∴k=2×2=4,∴這個反比例函數(shù)的解析式為:y=.故答案為y=.點睛:本題考查了反比例函數(shù)圖象上點的坐標特征,所有在反比例函數(shù)上的點的橫縱坐標的積應等于比例系數(shù).同時考查了式子的變形.三、解答題(共8題,共72分)17、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調運方案總運費最?。籱=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】

(1)根據題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調運方案.(3)根據題意得出w與x之間的函數(shù)關系式,然后根據m的取值范圍不同分別分析得出總運費最小的調運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調運方案總運費最小;m=2時,在40?x?240的前提下調運方案的總運費不變;2<m<15時,x=240總運費最小,其調運方案如表二.此題考查一次函數(shù)的應用,解題關鍵在于根據題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.18、(1)證明見解析;(1).【解析】

(1)由平行四邊形的判定得出四邊形OCED是平行四邊形,根據矩形的性質求出OC=OD,根據菱形的判定得出即可.(1)解直角三角形求出BC=1.AB=DC=1,連接OE,交CD于點F,根據菱形的性質得出F為CD中點,求出OF=BC=1,求出OE=1OF=1,求出菱形的面積即可.【詳解】證明:,,四邊形OCED是平行四邊形,矩形ABCD,,,,,四邊形OCED是菱形;在矩形ABCD中,,,,,,連接OE,交CD于點F,四邊形OCED為菱形,為CD中點,為BD中點,,,.本題主要考查了矩形的性質和菱形的性質和判定的應用,能靈活運用定理進行推理是解此題的關鍵,注意:菱形的面積等于對角線積的一半.19、當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.【解析】

先化簡分式,再解不等式組求得x的取值范圍,在此范圍內找到符合分式有意義的x的整數(shù)值,代入計算可得.【詳解】原式=÷=?=,解不等式組,解不等式①,得:x>﹣4,解不等式②,得:x≤﹣1,∴不等式組的解集為﹣4<x≤﹣1,∴不等式的整數(shù)解是﹣3,﹣2,﹣1.又∵x+1≠0,x﹣1≠0∴x≠±1,∴x=﹣3或x=﹣2,當x=﹣3時,原式=﹣,當x=﹣2時,原式=﹣1.本題考查了分式的化簡求值及一元一次不等式組的整數(shù)解,求分式的值時,一定要選擇使每個分式都有意義的未知數(shù)的值.20、周瑜去世的年齡為16歲.【解析】

設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.根據題意建立方程求出其值就可以求出其結論.【詳解】設周瑜逝世時的年齡的個位數(shù)字為x,則十位數(shù)字為x﹣1.由題意得;10(x﹣1)+x=x2,解得:x1=5,x2=6當x=5時,周瑜的年齡25歲,非而立之年,不合題意,舍去;當x=6時,周瑜年齡為16歲,完全符合題意.答:周瑜去世的年齡為16歲.本題是一道數(shù)字問題的運用題,考查了列一元二次方程解實際問題的運用,在解答中理解而立之年是一個人10歲的年齡是關鍵.21、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【解析】

(1)利用50≤x<60的頻數(shù)和頻率,根據公式:頻率=頻數(shù)÷總數(shù)先計算出樣本總人數(shù),再分別計算出a,b,c的值;(2)先計算出競賽分數(shù)不低于70分的頻率,根據樣本估計總體的思想,計算出1000名學生中競賽成績不低于70分的人數(shù);(3)列樹形圖或列出表格,得到要求的所有情況和2名同學來自一組的情況,利用求概率公式計算出概率.【詳解】解:(1)樣本人數(shù)為:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人數(shù)為:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在選取的樣本中,競賽分數(shù)不低于70分的頻率是0.5+0.06+0.04=0.6,根據樣本估計總體的思想,有:1000×0.6=600(人)∴這1000名學生中有600人的競賽成績不低于70分;(3)成績是80分以上的同學共有5人,其中第4組有3人,不妨記為甲,乙,丙,第5組有2人,不妨記作A,B從競賽成績是80分以上(含80分)的同學中隨機抽取兩名同學,情形如樹形圖所示,共有20種情況:抽取兩名同學在同一組的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8種情況,∴抽取的2名同學來自同一組的概率P==本題考查了頻數(shù)、頻率、總數(shù)間關系及用列表法或樹形圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論