版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
選擇性必修第一冊
蘇教版高中數(shù)學(xué)(1)(kx+b)'=k(k,b為常數(shù));(2)C'=0(C為常數(shù));(3)x'=1;(4)(x2)'=2x;(5)(x3)'=3x2;(6)
'=-
;(7)(
)'=
.5.2導(dǎo)數(shù)的運算1|幾個常用函數(shù)的求導(dǎo)公式知識點必備知識清單破2|基本初等函數(shù)的求導(dǎo)公式知識點原函數(shù)導(dǎo)函數(shù)f(x)=xα(α為常數(shù))f'(x)=αxα-1f(x)=ax(a>0,且a≠1)f'(x)=axlnaf(x)=exf'(x)=exf(x)=logax(a>0,且a≠1)f'(x)=
f(x)=lnxf'(x)=
f(x)=sinxf'(x)=cosxf(x)=cosxf'(x)=-sinx設(shè)函數(shù)f(x),g(x)均可導(dǎo),且其導(dǎo)數(shù)分別為f'(x),g'(x),則3|函數(shù)的和、差、積、商的求導(dǎo)法則知識點和的導(dǎo)數(shù)[f(x)+g(x)]'=f'(x)+g'(x)差的導(dǎo)數(shù)[f(x)-g(x)]'=f'(x)-g'(x)積的導(dǎo)數(shù)[Cf(x)]'=Cf'(x)(C為常數(shù)),[f(x)g(x)]'=f
'(x)g(x)+f(x)g'(x)商的導(dǎo)數(shù)
'=
(g(x)≠0)一般地,對于由函數(shù)y=f(u)和u=g(x)復(fù)合而成的函數(shù)y=f(g(x)),它的導(dǎo)數(shù)與函數(shù)y=f(u),u=g(x)的導(dǎo)數(shù)間的關(guān)系為y'x=y'u·u'x.4|簡單復(fù)合函數(shù)的導(dǎo)數(shù)知識點知識辨析1.[f(x0)]'=f'(x0),對嗎?2.(ax)'=xax-1(a>0,且a≠1),對嗎?3.若f'(x)=1,則f'(x)的原函數(shù)一定是f(x)=x嗎?4.已知函數(shù)f(x)=x-
x2-lnx,則f'(-1)=3,正確嗎?一語破的1.不對.f(x0)是一個常數(shù),所以[f(x0)]'=0,而f'(x0)是當(dāng)x=x0時f'(x)的函數(shù)值,不一定為0.2.不對.(ax)'=axlna(a>0,且a≠1),而(xa)'=axa-1(a是常數(shù)).求導(dǎo)時不要混淆指數(shù)函數(shù)和冪函數(shù)的
求導(dǎo)公式.3.不一定.若f'(x)=1,則f(x)=x+c(c為常數(shù)).4.不正確.函數(shù)f(x)的定義域為{x|x>0},所以f'(-1)的值不存在.利用導(dǎo)數(shù)的四則運算法則求導(dǎo)的策略(1)若待求導(dǎo)的函數(shù)是兩個函數(shù)商的形式,則可先對函數(shù)進(jìn)行適當(dāng)變形,再求導(dǎo).(2)對于多個整式乘積形式的函數(shù),可以考慮展開,化為和、差形式,再求導(dǎo).(3)對于三角函數(shù),可考慮先進(jìn)行恒等變形,再求導(dǎo).1|利用導(dǎo)數(shù)的四則運算法則求導(dǎo)
定點關(guān)鍵能力定點破典例求下列函數(shù)的導(dǎo)數(shù).(1)y=lnx+
;(2)y=(2x2-1)(3x+1);(3)y=x-sin
cos
;(4)y=
.解析
(1)y'=
'=(lnx)'+
'=
-
.(2)因為y=(2x2-1)(3x+1)=6x3+2x2-3x-1,所以y'=(6x3+2x2-3x-1)'=18x2+4x-3.(3)因為y=x-sin
cos
=x-
sinx,所以y'=
'=x'-
'=1-
cosx.(4)y'=
'=
=-
.
1.復(fù)合函數(shù)求導(dǎo)的步驟2.求復(fù)合函數(shù)的導(dǎo)數(shù)的注意點2|復(fù)合函數(shù)的導(dǎo)數(shù)定點(1)通常是將復(fù)合函數(shù)分解為基本初等函數(shù);(2)求導(dǎo)時分清是對哪個變量求導(dǎo);(3)計算結(jié)果盡量簡單.典例求下列函數(shù)的導(dǎo)數(shù):(1)y=
;(2)y=(1-2x)3;(3)y=ln(2x+1);(4)y=cos
;(5)y=sin
;(6)y=22x+1.解析
(1)函數(shù)y=
可以看作函數(shù)y=
和u=3x+1的復(fù)合函數(shù),∴y'x=y'u·u'x=
'·(3x+1)'=
'·3=-3
=-3(3x+1
.(2)函數(shù)y=(1-2x)3可以看作函數(shù)y=u3和u=1-2x的復(fù)合函數(shù),∴y'x=y'u·u'x=(u3)'·(1-2x)'=-6u2=-6(1-2x)2.(3)函數(shù)y=ln(2x+1)可以看作函數(shù)y=lnu和u=2x+1的復(fù)合函數(shù),∴y'x=y'u·u'x=(lnu)'·(2x+1)'=
=
.(4)函數(shù)y=cos
可以看作函數(shù)y=cosu和u=
的復(fù)合函數(shù),∴y'x=y'u·u'x=(cosu)'·
'=-
sinu=-
sin
.(5)函數(shù)y=sin
可以看作函數(shù)y=sinu和u=
-3x的復(fù)合函數(shù),∴y'x=y'u·u'x=(sinu)'·
'=-3cosu=-3cos
=3sin3x.(6)函數(shù)y=22x+1可以看作函數(shù)y=2u和u=2x+1的復(fù)合函數(shù),∴y'x=y'u·u'x=(2u)'·(2x+1)'=2·2uln2=2·22x+1ln2=4x+1ln2.
切線問題的處理思路(1)對函數(shù)進(jìn)行求導(dǎo);(2)若已知切點,則直接求出切線斜率、切線方程;(3)若切點未知,則先設(shè)出切點,用切點表示切線斜率,再根據(jù)條件求出切點坐標(biāo).在解決此類問題時,求函數(shù)的導(dǎo)數(shù)是基礎(chǔ),找出切點是關(guān)鍵.3|利用導(dǎo)數(shù)運算解決切線問題定點典例(1)若直線l:y=kx+b
與曲線f(x)=ex-1和g(x)=ln(x+1)均相切,則直線l的方程為
;(2)若點P是曲線y=x2-lnx-1上任意一點,則點P到直線y=x-3距離的最小值為
.解析
(1)設(shè)直線l與曲線f(x),g(x)分別相切于點A(x1,
),B(x2,ln(x2+1)),由f'(x)=ex-1,g'(x)=
,可得k=
=
,故曲線f(x)在點A處的切線方程為y-
=
(x-x1),即y=
x+
(1-x1),曲線g(x)在點B處的切線方程為y-ln(x2+1)=
(x-x2),即y=
x+ln(x2+1)-
,由
得
ln(1+x2)=ln(1+x2)-
,故
=
ln(1+x2),故x2=0或ln(1+x2)=1,若ln(1+x2)=1,則x2+1=e,則
=
<
,不合題意,舍去,故x2=0,此時直線l的方程為y=x.(2)由題意可得,當(dāng)點P到直線y=x-3的距離最小時,曲線y=x2-lnx-1在點P處的切
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高層展覽館施工合同模板
- 電視租賃合同三篇
- 自然災(zāi)害導(dǎo)致理賠客人的協(xié)議書(2篇)
- 團(tuán)建策劃合同
- 集體土地宅基地協(xié)議書范本
- 協(xié)議購車合同范例
- 農(nóng)民承包小麥合同范例
- 院落保潔合同范例
- 木架拆除回收合同范例
- 瀝青購銷合同范例
- PS平面設(shè)計練習(xí)題庫(附參考答案)
- 混合云架構(gòu)整體設(shè)計及應(yīng)用場景介紹
- 《盤點程序說明會》課件
- 期末素養(yǎng)綜合測評卷(二)2024-2025學(xué)年魯教版(五四制)六年級數(shù)學(xué)上冊(解析版)
- 小王子-英文原版
- 考核19(西餐)試題
- 2024安全生產(chǎn)法解讀
- 吉林省長春市(2024年-2025年小學(xué)五年級語文)人教版期末考試(上學(xué)期)試卷及答案
- 環(huán)保創(chuàng)業(yè)孵化器服務(wù)行業(yè)營銷策略方案
- 研究生年終總結(jié)和展望
- 浙江省杭州市2023-2024學(xué)年高二上學(xué)期1月期末地理試題 含解析
評論
0/150
提交評論