河南省信陽市浉河區(qū)第九中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第1頁
河南省信陽市浉河區(qū)第九中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第2頁
河南省信陽市浉河區(qū)第九中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第3頁
河南省信陽市浉河區(qū)第九中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第4頁
河南省信陽市浉河區(qū)第九中學(xué)2024年中考數(shù)學(xué)考前最后一卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

河南省信陽市浉河區(qū)第九中學(xué)2024年中考數(shù)學(xué)考前最后一卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知⊙O1與⊙O2的半徑分別是3cm和5cm,兩圓的圓心距為4cm,則兩圓的位置關(guān)系是()A.相交B.內(nèi)切C.外離D.內(nèi)含2.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.23.計算的結(jié)果是()A.1 B.-1 C. D.4.已知x=2﹣3,則代數(shù)式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣35.已知函數(shù)y=的圖象如圖,當(dāng)x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥06.如圖,在?ABCD中,AB=1,AC=4,對角線AC與BD相交于點O,點E是BC的中點,連接AE交BD于點F.若AC⊥AB,則FD的長為()A.2 B.3 C.4 D.67.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.38.已知△ABC,D是AC上一點,尺規(guī)在AB上確定一點E,使△ADE∽△ABC,則符合要求的作圖痕跡是()A. B.C. D.9.如圖,將一正方形紙片沿圖(1)、(2)的虛線對折,得到圖(3),然后沿圖(3)中虛線的剪去一個角,展開得平面圖形(4),則圖(3)的虛線是()A. B. C. D.10.一元二次方程(x+3)(x-7)=0的兩個根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-711.已知等腰三角形的周長是10,底邊長y是腰長x的函數(shù),則下列圖象中,能正確反映y與x之間函數(shù)關(guān)系的圖象是()A. B. C.D12.已知一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形二、填空題:(本大題共6個小題,每小題4分,共24分.)13.某校廣播臺要招聘一批小主持人,對A、B兩名小主持人進行了專業(yè)素質(zhì)、創(chuàng)新能力、外語水平和應(yīng)變能力進行了測試,他們各項的成績(百分制)如表所示:應(yīng)聘者專業(yè)素質(zhì)創(chuàng)新能力外語水平應(yīng)變能力A73857885B81828075如果只招一名主持人,該選用______;依據(jù)是_____.(答案不唯一,理由支撐選項即可)14.如圖,的頂點落在兩條平行線上,點D、E、F分別是三邊中點,平行線間的距離是8,,移動點A,當(dāng)時,EF的長度是______.15.分解因式:_____.16.如圖,經(jīng)過點B(-2,0)的直線與直線相交于點A(-1,-2),則不等式的解集為.17.不等式組的非負整數(shù)解的個數(shù)是_____.18.七邊形的外角和等于_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.20.(6分)如圖,在平面直角坐標系xOy中,函數(shù)()的圖象經(jīng)過點,AB⊥x軸于點B,點C與點A關(guān)于原點O對稱,CD⊥x軸于點D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過點C,且與x軸,y軸的交點分別為點E,F(xiàn),當(dāng)時,求點F的坐標.21.(6分)如圖,在△ABC中,∠ABC=90°,以AB為直徑的⊙O與AC邊交于點D,過點D的直線交BC邊于點E,∠BDE=∠A.判斷直線DE與⊙O的位置關(guān)系,并說明理由.若⊙O的半徑R=5,tanA=,求線段CD的長.22.(8分)如圖,AB是⊙O的直徑,D是⊙O上一點,點E是AC的中點,過點A作⊙O的切線交BD的延長線于點F.連接AE并延長交BF于點C.(1)求證:AB=BC;(2)如果AB=5,tan∠FAC=,求FC的長.23.(8分)如圖,Rt△ABC,CA⊥BC,AC=4,在AB邊上取一點D,使AD=BC,作AD的垂直平分線,交AC邊于點F,交以AB為直徑的⊙O于G,H,設(shè)BC=x.(1)求證:四邊形AGDH為菱形;(2)若EF=y(tǒng),求y關(guān)于x的函數(shù)關(guān)系式;(3)連結(jié)OF,CG.①若△AOF為等腰三角形,求⊙O的面積;②若BC=3,則CG+9=______.(直接寫出答案).24.(10分)已知拋物線的開口向上頂點為P(1)若P點坐標為(4,一1),求拋物線的解析式;(2)若此拋物線經(jīng)過(4,一1),當(dāng)-1≤x≤2時,求y的取值范圍(用含a的代數(shù)式表示)(3)若a=1,且當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,求b的值25.(10分)工人小王生產(chǎn)甲、乙兩種產(chǎn)品,生產(chǎn)產(chǎn)品件數(shù)與所用時間之間的關(guān)系如表:生產(chǎn)甲產(chǎn)品件數(shù)(件)生產(chǎn)乙產(chǎn)品件數(shù)(件)所用總時間(分鐘)10103503020850(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘?(2)小王每天工作8個小時,每月工作25天.如果小王四月份生產(chǎn)甲種產(chǎn)品a件(a為正整數(shù)).①用含a的代數(shù)式表示小王四月份生產(chǎn)乙種產(chǎn)品的件數(shù);②已知每生產(chǎn)一件甲產(chǎn)品可得1.50元,每生產(chǎn)一件乙種產(chǎn)品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.26.(12分)如圖,在平面直角坐標系中,函數(shù)的圖象與直線交于點A(3,m).求k、m的值;已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù)的圖象于點N.①當(dāng)n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.27.(12分)下面是小星同學(xué)設(shè)計的“過直線外一點作已知直線的平行線”的尺規(guī)作圖過程:已知:如圖,直線l和直線l外一點A求作:直線AP,使得AP∥l作法:如圖①在直線l上任取一點B(AB與l不垂直),以點A為圓心,AB為半徑作圓,與直線l交于點C.②連接AC,AB,延長BA到點D;③作∠DAC的平分線AP.所以直線AP就是所求作的直線根據(jù)小星同學(xué)設(shè)計的尺規(guī)作圖過程,使用直尺和圓規(guī),補全圖形(保留作圖痕跡)完成下面的證明證明:∵AB=AC,∴∠ABC=∠ACB(填推理的依據(jù))∵∠DAC是△ABC的外角,∴∠DAC=∠ABC+∠ACB(填推理的依據(jù))∴∠DAC=2∠ABC∵AP平分∠DAC,∴∠DAC=2∠DAP∴∠DAP=∠ABC∴AP∥l(填推理的依據(jù))

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】試題分析:∵⊙O1和⊙O2的半徑分別為5cm和3cm,圓心距O1O2=4cm,5﹣3<4<5+3,∴根據(jù)圓心距與半徑之間的數(shù)量關(guān)系可知⊙O1與⊙O2相交.故選A.考點:圓與圓的位置關(guān)系.2、D【解析】

連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設(shè)OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設(shè)OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內(nèi)的綜合問題,解題的關(guān)鍵是熟知垂徑定理、圓周角定理及勾股定理.3、C【解析】

原式通分并利用同分母分式的減法法則計算,即可得到結(jié)果.【詳解】解:==,故選:C.【點睛】此題考查了分式的混合運算,熟練掌握運算法則是解本題的關(guān)鍵.4、C【解析】

把x的值代入代數(shù)式,運用完全平方公式和平方差公式計算即可【詳解】解:當(dāng)x=2﹣3時,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故選:C.【點睛】此題考查二次根式的化簡求值,關(guān)鍵是代入后利用完全平方公式和平方差公式進行計算.5、C【解析】試題分析:根據(jù)反比例函數(shù)的性質(zhì),再結(jié)合函數(shù)的圖象即可解答本題.解:根據(jù)反比例函數(shù)的性質(zhì)和圖象顯示可知:此函數(shù)為減函數(shù),x≥-1時,在第三象限內(nèi)y的取值范圍是y≤-1;在第一象限內(nèi)y的取值范圍是y>1.故選C.考點:本題考查了反比例函數(shù)的性質(zhì)點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數(shù)的基本性質(zhì)和知識,反比例函數(shù)y=的圖象是雙曲線,當(dāng)k>1時,圖象在一、三象限,在每個象限內(nèi)y隨x的增大而減小;當(dāng)k<1時,圖象在二、四象限,在每個象限內(nèi),y隨x的增大而增大6、C【解析】

利用平行四邊形的性質(zhì)得出△ADF∽△EBF,得出=,再根據(jù)勾股定理求出BO的長,進而得出答案.【詳解】解:∵在□ABCD中,對角線AC、BD相交于O,∴BO=DO,AO=OC,AD∥BC,∴△ADF∽△EBF,∴=,∵AC=4,∴AO=2,∵AB=1,AC⊥AB,∴BO===3,∴BD=6,∵E是BC的中點,∴==,∴BF=2,F(xiàn)D=4.故選C.【點睛】本題考查了勾股定理與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握勾股定理與相似三角形的判定與性質(zhì).7、B【解析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.8、A【解析】

以DA為邊、點D為頂點在△ABC內(nèi)部作一個角等于∠B,角的另一邊與AB的交點即為所求作的點.【詳解】如圖,點E即為所求作的點.故選:A.【點睛】本題主要考查作圖-相似變換,根據(jù)相似三角形的判定明確過點D作一角等于∠B或∠C,并熟練掌握做一個角等于已知角的作法式解題的關(guān)鍵.9、D【解析】

本題關(guān)鍵是正確分析出所剪時的虛線與正方形紙片的邊平行.【詳解】要想得到平面圖形(4),需要注意(4)中內(nèi)部的矩形與原來的正方形紙片的邊平行,故剪時,虛線也與正方形紙片的邊平行,所以D是正確答案,故本題正確答案為D選項.【點睛】本題考查了平面圖形在實際生活中的應(yīng)用,有良好的空間想象能力過動手能力是解題關(guān)鍵.10、C【解析】

根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點選擇恰當(dāng)?shù)姆椒ㄟM行求解是解題的關(guān)鍵.11、D【解析】

先根據(jù)三角形的周長公式求出函數(shù)關(guān)系式,再根據(jù)三角形的任意兩邊之和大于第三邊,三角形的任意兩邊之差小于第三邊求出x的取值范圍,然后選擇即可.【詳解】由題意得,2x+y=10,所以,y=-2x+10,由三角形的三邊關(guān)系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式組的解集是2.5<x<5,正確反映y與x之間函數(shù)關(guān)系的圖象是D選項圖象.故選:D.12、D【解析】

根據(jù)多邊形的外角和是360°,以及多邊形的內(nèi)角和定理即可求解.【詳解】設(shè)多邊形的邊數(shù)是n,則(n?2)?180=3×360,解得:n=8.故選D.【點睛】此題考查多邊形內(nèi)角與外角,解題關(guān)鍵在于掌握其定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、AA的平均成績高于B平均成績【解析】

根據(jù)表格求出A,B的平均成績,比較大小即可解題.【詳解】解:A的平均數(shù)是80.25,B的平均數(shù)是79.5,∴A比B更優(yōu)秀,∴如果只招一名主持人,該選用A;依據(jù)是A的平均成績高于B平均成績.【點睛】本題考查了平均數(shù)的實際應(yīng)用,屬于簡單題,從表格中找到有用信息是解題關(guān)鍵.14、1【解析】

過點D作于點H,根等腰三角形的性質(zhì)求得BD的長度,繼而得到,結(jié)合三角形中位線定理求得EF的長度即可.【詳解】解:如圖,過點D作于點H,

過點D作于點H,,

又平行線間的距離是8,點D是AB的中點,

,

在直角中,由勾股定理知,.

點D是AB的中點,

又點E、F分別是AC、BC的中點,

是的中位線,

故答案是:1.【點睛】考查了三角形中位線定理和平行線的性質(zhì),解題的關(guān)鍵是根據(jù)平行線的性質(zhì)求得DH的長度.15、【解析】分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式2后繼續(xù)應(yīng)用完全平方公式分解即可:.16、【解析】分析:不等式的解集就是在x下方,直線在直線上方時x的取值范圍.由圖象可知,此時.17、1【解析】

先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可得到不等式組的解集.【詳解】解:解①得:x≥﹣,解②得:x<1,∴不等式組的解集為﹣≤x<1,∴其非負整數(shù)解為0、1、2、3、4共1個,故答案為1.【點睛】本題考查了不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.18、360°【解析】

根據(jù)多邊形的外角和等于360度即可求解.【詳解】解:七邊形的外角和等于360°.故答案為360°【點睛】本題考查了多邊形的內(nèi)角和外角的知識,屬于基礎(chǔ)題,解題的關(guān)鍵是掌握多邊形的外角和等于360°.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙?,通過證明四邊形是平行四邊形達到上述目的.20、(1)m=8,n=-2;(2)點F的坐標為,【解析】分析:(1)利用三角形的面積公式構(gòu)建方程求出n,再利用待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時,設(shè)直線y=kx+b與x軸,y軸的交點分別為,.②圖中,當(dāng)k>0時,設(shè)直線y=kx+b與x軸,y軸的交點分別為點,.詳解:(1)如圖②∵點A的坐標為,點C與點A關(guān)于原點O對稱,∴點C的坐標為.∵AB⊥x軸于點B,CD⊥x軸于點D,∴B,D兩點的坐標分別為,.∵△ABD的面積為8,,∴.解得.∵函數(shù)()的圖象經(jīng)過點,∴.(2)由(1)得點C的坐標為.①如圖,當(dāng)時,設(shè)直線與x軸,y軸的交點分別為點,.由CD⊥x軸于點D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點的坐標為.②如圖,當(dāng)時,設(shè)直線與x軸,y軸的交點分別為點,.同理可得CD∥,.∵,∴為線段的中點,.∴.∴點的坐標為.綜上所述,點F的坐標為,.點睛:本題考查了反比例函數(shù)綜合題、一次函數(shù)的應(yīng)用、三角形的面積公式等知識,解題的關(guān)鍵是會用方程的思想思考問題,會用分類討論的思想思考問題,屬于中考壓軸題.21、(1)DE與⊙O相切;理由見解析;(2).【解析】

(1)連接OD,利用圓周角定理以及等腰三角形的性質(zhì)得出OD⊥DE,進而得出答案;(2)得出△BCD∽△ACB,進而利用相似三角形的性質(zhì)得出CD的長.【詳解】解:(1)直線DE與⊙O相切.理由如下:連接OD.∵OA=OD∴∠ODA=∠A又∵∠BDE=∠A∴∠ODA=∠BDE∵AB是⊙O直徑∴∠ADB=90°即∠ODA+∠ODB=90°∴∠BDE+∠ODB=90°∴∠ODE=90°∴OD⊥DE∴DE與⊙O相切;(2)∵R=5,∴AB=10,在Rt△ABC中∵tanA=∴BC=AB?tanA=10×,∴AC=,∵∠BDC=∠ABC=90°,∠BCD=∠ACB∴△BCD∽△ACB∴∴CD=.【點睛】本題考查切線的判定、勾股定理及相似三角形的判定與性質(zhì),掌握相關(guān)性質(zhì)定理靈活應(yīng)用是本題的解題關(guān)鍵.22、(1)見解析;(2).【解析】分析:(1)由AB是直徑可得BE⊥AC,點E為AC的中點,可知BE垂直平分線段AC,從而結(jié)論可證;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,從而可設(shè)AE=x,BE=2x,由勾股定理求出AE、BE、AC的長.作CH⊥AF于H,可證Rt△ACH∽Rt△BAC,列比例式求出HC、AH的值,再根據(jù)平行線分線段成比例求出FH,然后利用勾股定理求出FC的值.詳解:(1)證明:連接BE.∵AB是⊙O的直徑,∴∠AEB=90°,∴BE⊥AC,而點E為AC的中點,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF為切線,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,設(shè)AE=x,則BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如圖,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,F(xiàn)C==.點睛:本題考查了圓周角定理的推論,線段垂直平分線的判定與性質(zhì),切線的性質(zhì),勾股定理,相似三角形的判定與性質(zhì),平行線分線段成比例定理,銳角三角函數(shù)等知識點及見比設(shè)參的數(shù)學(xué)思想,得到BE垂直平分AC是解(1)的關(guān)鍵,得到Rt△ACH∽Rt△BAC是解(2)的關(guān)鍵.23、(1)證明見解析;(2)y=x2(x>0);(3)①π或8π或(2+2)π;②4.【解析】

(1)根據(jù)線段的垂直平分線的性質(zhì)以及垂徑定理證明AG=DG=DH=AH即可;

(2)只要證明△AEF∽△ACB,可得解決問題;

(3)①分三種情形分別求解即可解決問題;

②只要證明△CFG∽△HFA,可得=,求出相應(yīng)的線段即可解決問題;【詳解】(1)證明:∵GH垂直平分線段AD,∴HA=HD,GA=GD,∵AB是直徑,AB⊥GH,∴EG=EH,∴DG=DH,∴AG=DG=DH=AH,∴四邊形AGDH是菱形.(2)解:∵AB是直徑,∴∠ACB=90°,∵AE⊥EF,∴∠AEF=∠ACB=90°,∵∠EAF=∠CAB,∴△AEF∽△ACB,∴,∴,∴y=x2(x>0).(3)①解:如圖1中,連接DF.∵GH垂直平分線段AD,∴FA=FD,∴當(dāng)點D與O重合時,△AOF是等腰三角形,此時AB=2BC,∠CAB=30°,∴AB=,∴⊙O的面積為π.如圖2中,當(dāng)AF=AO時,∵AB==,∴OA=,∵AF==,∴=,解得x=4(負根已經(jīng)舍棄),∴AB=,∴⊙O的面積為8π.如圖2﹣1中,當(dāng)點C與點F重合時,設(shè)AE=x,則BC=AD=2x,AB=,∵△ACE∽△ABC,∴AC2=AE?AB,∴16=x?,解得x2=2﹣2(負根已經(jīng)舍棄),∴AB2=16+4x2=8+8,∴⊙O的面積=π??AB2=(2+2)π綜上所述,滿足條件的⊙O的面積為π或8π或(2+2)π;②如圖3中,連接CG.∵AC=4,BC=3,∠ACB=90°,∴AB=5,∴OH=OA=,∴AE=,∴OE=OA﹣AE=1,∴EG=EH==,∵EF=x2=,∴FG=﹣,AF==,AH==,∵∠CFG=∠AFH,∠FCG=∠AHF,∴△CFG∽△HFA,∴,∴,∴CG=﹣,∴CG+9=4.故答案為4.【點睛】本題考查圓綜合題、相似三角形的判定和性質(zhì)、垂徑定理、線段的垂直平分線的性質(zhì)、菱形的判定和性質(zhì)、勾股定理、解直角三角形等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題,學(xué)會用分類討論的思想思考問題.24、(1);(2)1-4a≤y≤4+5a;(3)b=2或-10.【解析】

(1)將P(4,-1)代入,可求出解析式

(2)將(4,-1)代入求得:b=-4a-1,再代入對稱軸直線中,可判斷,且開口向上,所以y隨x的增大而減小,再把x=-1,x=2代入即可求得.

(3)觀察圖象可得,當(dāng)0≤x≤1時,拋物線上的點到x軸距離的最大值為6,這些點可能為x=0,x=1,三種情況,再根據(jù)對稱軸在不同位置進行討論即可.【詳解】解:(1)由此拋物線頂點為P(4,-1),所以y=a(x-4)2-1=ax2-8ax+16a-1,即16a-1=3,解得a=,b=-8a=-2所以拋物線解析式為:;(2)由此拋物線經(jīng)過點C(4,-1),所以一1=16a+4b+3,即b=-4a-1.因為拋物線的開口向上,則有其對稱軸為直線,而所以當(dāng)-1≤x≤2時,y隨著x的增大而減小當(dāng)x=-1時,y=a+(4a+1)+3=4+5a當(dāng)x=2時,y=4a-2(4a+1)+3=1-4a所以當(dāng)-1≤x≤2時,1-4a≤y≤4+5a;(3)當(dāng)a=1時,拋物線的解析式為y=x2+bx+3∴拋物線的對稱軸為直線由拋物線圖象可知,僅當(dāng)x=0,x=1或x=-時,拋物線上的點可能離x軸最遠分別代入可得,當(dāng)x=0時,y=3當(dāng)x=1時,y=b+4當(dāng)x=-時,y=-+3①當(dāng)一<0,即b>0時,3≤y≤b+4,由b+4=6解得b=2②當(dāng)0≤-≤1時,即一2≤b≤0時,△=b2-12<0,拋物線與x軸無公共點由b+4=6解得b=2(舍去);③當(dāng),即b<-2時,b+4≤y≤3,由b+4=-6解得b=-10綜上,b=2或-10【點睛】本題考查了二次函數(shù)的性質(zhì),待定系數(shù)法求函數(shù)解析式,以及最值問題,關(guān)鍵是對稱軸在不同的范圍內(nèi),拋物線上的點到x軸距離的最大值的點不同.25、(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要15分鐘、20分鐘;(2)①600-;②a≤1.【解析】

(1)設(shè)生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要x分鐘、y分鐘,根據(jù)圖示可得:生產(chǎn)10件甲產(chǎn)品,10件乙產(chǎn)品用時350分鐘,生產(chǎn)30件甲產(chǎn)品,20件乙產(chǎn)品,用時850分鐘,列方程組求解;(2)①根據(jù)生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要的時間關(guān)系即可表示出結(jié)果;②根據(jù)“小王四月份的工資不少于1500元”即可列出不等式.【詳解】(1)設(shè)生產(chǎn)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論