版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省長(zhǎng)沙市麓山國(guó)際實(shí)驗(yàn)校2023-2024學(xué)年中考聯(lián)考數(shù)學(xué)試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在△ABC中,∠C=90°,,那么∠B的度數(shù)為()A.60° B.45° C.30° D.30°或60°2.下列計(jì)算正確的是()A.a(chǎn)+a=2a B.b3?b3=2b3 C.a(chǎn)3÷a=a3 D.(a5)2=a73.如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC=3:2,點(diǎn)A(3,0),B(0,6)分別在x軸,y軸上,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)D,則k值為()A.﹣14 B.14 C.7 D.﹣74.在平面直角坐標(biāo)系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點(diǎn)C的坐標(biāo)為(1,0),頂點(diǎn)A的坐標(biāo)為(0,2),頂點(diǎn)B恰好落在第一象限的雙曲線上,現(xiàn)將直角三角板沿x軸正方向平移,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí)停止運(yùn)動(dòng),則此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為()A.(,0) B.(2,0) C.(,0) D.(3,0)5.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.6.在數(shù)軸上到原點(diǎn)距離等于3的數(shù)是()A.3 B.﹣3 C.3或﹣3 D.不知道7.解分式方程﹣3=時(shí),去分母可得()A.1﹣3(x﹣2)=4 B.1﹣3(x﹣2)=﹣4C.﹣1﹣3(2﹣x)=﹣4 D.1﹣3(2﹣x)=48.2017年人口普查顯示,河南某市戶籍人口約為2536000人,則該市戶籍人口數(shù)據(jù)用科學(xué)記數(shù)法可表示為()A.2.536×104人 B.2.536×105人 C.2.536×106人 D.2.536×107人9.下列命題中假命題是()A.正六邊形的外角和等于 B.位似圖形必定相似C.樣本方差越大,數(shù)據(jù)波動(dòng)越小 D.方程無實(shí)數(shù)根10.拋物線y=3(x﹣2)2+5的頂點(diǎn)坐標(biāo)是()A.(﹣2,5)B.(﹣2,﹣5)C.(2,5)D.(2,﹣5)二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.某校為了解學(xué)生最喜歡的球類運(yùn)動(dòng)情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生只寫一類最喜歡的球類運(yùn)動(dòng),以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分那么,其中最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為____________%12.計(jì)算的結(jié)果是____.13.已知二次函數(shù)的圖象如圖所示,若方程有兩個(gè)不相等的實(shí)數(shù)根,則的取值范圍是_____________.14.已知x+y=,xy=,則x2y+xy2的值為____.15.雙曲線、在第一象限的圖像如圖,過y2上的任意一點(diǎn)A,作x軸的平行線交y1于B,交y軸于C,過A作x軸的垂線交y1于D,交x軸于E,連結(jié)BD、CE,則=.16.因式分解:4ax2﹣4ay2=_____.三、解答題(共8題,共72分)17.(8分)(問題情境)張老師給愛好學(xué)習(xí)的小軍和小俊提出這樣的一個(gè)問題:如圖1,在△ABC中,AB=AC,點(diǎn)P為邊BC上任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F,求證:PD+PE=CF.小軍的證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.小俊的證明思路是:如圖2,過點(diǎn)P作PG⊥CF,垂足為G,可以證得:PD=GF,PE=CG,則PD+PE=CF.[變式探究]如圖3,當(dāng)點(diǎn)P在BC延長(zhǎng)線上時(shí),其余條件不變,求證:PD﹣PE=CF;請(qǐng)運(yùn)用上述解答中所積累的經(jīng)驗(yàn)和方法完成下列兩題:[結(jié)論運(yùn)用]如圖4,將矩形ABCD沿EF折疊,使點(diǎn)D落在點(diǎn)B上,點(diǎn)C落在點(diǎn)C′處,點(diǎn)P為折痕EF上的任一點(diǎn),過點(diǎn)P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;[遷移拓展]圖5是一個(gè)航模的截面示意圖.在四邊形ABCD中,E為AB邊上的一點(diǎn),ED⊥AD,EC⊥CB,垂足分別為D、C,且AD?CE=DE?BC,AB=2dm,AD=3dm,BD=dm.M、N分別為AE、BE的中點(diǎn),連接DM、CN,求△DEM與△CEN的周長(zhǎng)之和.18.(8分)美麗的黃河宛如一條玉帶穿城而過,沿河兩岸的濱河路風(fēng)情線是蘭州最美的景觀之一.?dāng)?shù)學(xué)課外實(shí)踐活動(dòng)中,小林在南濱河路上的A,B兩點(diǎn)處,利用測(cè)角儀分別對(duì)北岸的一觀景亭D進(jìn)行了測(cè)量.如圖,測(cè)得∠DAC=45°,∠DBC=65°.若AB=132米,求觀景亭D到南濱河路AC的距離約為多少米?(結(jié)果精確到1米,參考數(shù)據(jù):sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)19.(8分)在數(shù)學(xué)實(shí)踐活動(dòng)課上,老師帶領(lǐng)同學(xué)們到附近的濕地公園測(cè)量園內(nèi)雕塑的高度.用測(cè)角儀在A處測(cè)得雕塑頂端點(diǎn)C′的仰角為30°,再往雕塑方向前進(jìn)4米至B處,測(cè)得仰角為45°.問:該雕塑有多高?(測(cè)角儀高度忽略不計(jì),結(jié)果不取近似值.)20.(8分)如圖,已知是的外接圓,圓心在的外部,,,求的半徑.21.(8分)某公司計(jì)劃購(gòu)買A,B兩種型號(hào)的電腦,已知購(gòu)買一臺(tái)A型電腦需0.6萬元,購(gòu)買一臺(tái)B型電腦需0.4萬元,該公司準(zhǔn)備投入資金y萬元,全部用于購(gòu)進(jìn)35臺(tái)這兩種型號(hào)的電腦,設(shè)購(gòu)進(jìn)A型電腦x臺(tái).(1)求y關(guān)于x的函數(shù)解析式;(2)若購(gòu)進(jìn)B型電腦的數(shù)量不超過A型電腦數(shù)量的2倍,則該公司至少需要投入資金多少萬元?22.(10分)如圖,四邊形ABCD內(nèi)接于⊙O,BD是⊙O的直徑,AE⊥CD于點(diǎn)E,DA平分∠BDE.(1)求證:AE是⊙O的切線;(2)如果AB=4,AE=2,求⊙O的半徑.23.(12分)為了提高中學(xué)生身體素質(zhì),學(xué)校開設(shè)了A:籃球、B:足球、C:跳繩、D:羽毛球四種體育活動(dòng),為了解學(xué)生對(duì)這四種體育活動(dòng)的喜歡情況,在全校隨機(jī)抽取若干名學(xué)生進(jìn)行問卷調(diào)查(每個(gè)被調(diào)查的對(duì)象必須選擇而且只能在四種體育活動(dòng)中選擇一種),將數(shù)據(jù)進(jìn)行整理并繪制成以下兩幅統(tǒng)計(jì)圖(未畫完整).這次調(diào)查中,一共調(diào)查了________名學(xué)生;請(qǐng)補(bǔ)全兩幅統(tǒng)計(jì)圖;若有3名喜歡跳繩的學(xué)生,1名喜歡足球的學(xué)生組隊(duì)外出參加一次聯(lián)誼活動(dòng),欲從中選出2人擔(dān)任組長(zhǎng)(不分正副),求一人是喜歡跳繩、一人是喜歡足球的學(xué)生的概率.24.如圖所示,在長(zhǎng)和寬分別是a、b的矩形紙片的四個(gè)角都剪去一個(gè)邊長(zhǎng)為x的正方形.(1)用a,b,x表示紙片剩余部分的面積;(2)當(dāng)a=6,b=4,且剪去部分的面積等于剩余部分的面積時(shí),求正方形的邊長(zhǎng).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)特殊角的三角函數(shù)值可知∠A=60°,再根據(jù)直角三角形中兩銳角互余求出∠B的值即可.【詳解】解:∵,∴∠A=60°.∵∠C=90°,∴∠B=90°-60°=30°.點(diǎn)睛:本題考查了特殊角的三角函數(shù)值和直角三角形中兩銳角互余的性質(zhì),熟記特殊角的三角函數(shù)值是解答本題的突破點(diǎn).2、A【解析】
根據(jù)合并同類項(xiàng)法則;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加;同底數(shù)冪相除,底數(shù)不變指數(shù)相減;冪的乘方,底數(shù)不變指數(shù)相乘對(duì)各選項(xiàng)分析判斷后利用排除法求解.【詳解】A.a+a=2a,故本選項(xiàng)正確;B.,故本選項(xiàng)錯(cuò)誤;C.,故本選項(xiàng)錯(cuò)誤;D.,故本選項(xiàng)錯(cuò)誤.故選:A.【點(diǎn)睛】考查同底數(shù)冪的除法,合并同類項(xiàng),同底數(shù)冪的乘法,冪的乘方與積的乘方,比較基礎(chǔ),掌握運(yùn)算法則是解題的關(guān)鍵.3、B【解析】過點(diǎn)D作DF⊥x軸于點(diǎn)F,則∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四邊形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,點(diǎn)A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴點(diǎn)D的坐標(biāo)為:(7,2),∴k,故選B.4、C【解析】
過點(diǎn)B作BD⊥x軸于點(diǎn)D,易證△ACO≌△BCD(AAS),從而可求出B的坐標(biāo),進(jìn)而可求出反比例函數(shù)的解析式,根據(jù)解析式與A的坐標(biāo)即可得知平移的單位長(zhǎng)度,從而求出C的對(duì)應(yīng)點(diǎn).【詳解】解:過點(diǎn)B作BD⊥x軸于點(diǎn)D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設(shè)反比例函數(shù)的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當(dāng)頂點(diǎn)A恰好落在該雙曲線上時(shí),此時(shí)點(diǎn)A移動(dòng)了個(gè)單位長(zhǎng)度,∴C也移動(dòng)了個(gè)單位長(zhǎng)度,此時(shí)點(diǎn)C的對(duì)應(yīng)點(diǎn)C′的坐標(biāo)為(,0)故選:C.【點(diǎn)睛】本題考查反比例函數(shù)的綜合問題,涉及全等三角形的性質(zhì)與判定,反比例函數(shù)的解析式,平移的性質(zhì)等知識(shí),綜合程度較高,屬于中等題型.5、B【解析】選項(xiàng)中,由圖可知:在,;在,,∴,所以A錯(cuò)誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以B正確;選項(xiàng)中,由圖可知:在,;在,,∴,所以C錯(cuò)誤;選項(xiàng)中,由圖可知:在,;在,,∴,所以D錯(cuò)誤.故選B.點(diǎn)睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢(shì)確定出兩個(gè)解析式中“”的符號(hào),看兩者的符號(hào)是否一致即可判斷它們?cè)谕蛔鴺?biāo)系中的圖象情況,而這與“b”的取值無關(guān).6、C【解析】
根據(jù)數(shù)軸上到原點(diǎn)距離等于3的數(shù)為絕對(duì)值是3的數(shù)即可求解.【詳解】絕對(duì)值為3的數(shù)有3,-3.故答案為C.【點(diǎn)睛】本題考查數(shù)軸上距離的意義,解題的關(guān)鍵是知道數(shù)軸上的點(diǎn)到原點(diǎn)的距離為絕對(duì)值.7、B【解析】
方程兩邊同時(shí)乘以(x-2),轉(zhuǎn)化為整式方程,由此即可作出判斷.【詳解】方程兩邊同時(shí)乘以(x-2),得1﹣3(x﹣2)=﹣4,故選B.【點(diǎn)睛】本題考查了解分式方程,利用了轉(zhuǎn)化的思想,熟練掌握解分式方程的一般步驟以及注意事項(xiàng)是解題的關(guān)鍵.8、C【解析】
科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時(shí),要看把原數(shù)變成a時(shí),小數(shù)點(diǎn)移動(dòng)了多少位,n的絕對(duì)值與小數(shù)點(diǎn)移動(dòng)的位數(shù)相同.當(dāng)原數(shù)絕對(duì)值≥1時(shí),n是正數(shù);當(dāng)原數(shù)的絕對(duì)值<1時(shí),n是負(fù)數(shù).【詳解】2536000人=2.536×106人.故選C.【點(diǎn)睛】本題考查了科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時(shí)關(guān)鍵要正確確定a的值以及n的值.9、C【解析】試題解析:A、正六邊形的外角和等于360°,是真命題;B、位似圖形必定相似,是真命題;C、樣本方差越大,數(shù)據(jù)波動(dòng)越小,是假命題;D、方程x2+x+1=0無實(shí)數(shù)根,是真命題;故選:C.考點(diǎn):命題與定理.10、C【解析】
根據(jù)二次函數(shù)的性質(zhì)y=a(x﹣h)2+k的頂點(diǎn)坐標(biāo)是(h,k)進(jìn)行求解即可.【詳解】∵拋物線解析式為y=3(x-2)2+5,∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(2,5),故選C.【點(diǎn)睛】本題考查了二次函數(shù)的性質(zhì),根據(jù)拋物線的頂點(diǎn)式,可確定拋物線的開口方向,頂點(diǎn)坐標(biāo)(對(duì)稱軸),最大(最小)值,增減性等.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、1%【解析】
依據(jù)最喜歡羽毛球的學(xué)生數(shù)以及占被調(diào)查總?cè)藬?shù)的百分比,即可得到被調(diào)查總?cè)藬?shù),進(jìn)而得出最喜歡籃球的學(xué)生數(shù)以及最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比.【詳解】∵被調(diào)查學(xué)生的總數(shù)為10÷20%=50人,
∴最喜歡籃球的有50×32%=16人,
則最喜歡足球的學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比=×100%=1%,
故答案為:1.【點(diǎn)睛】本題主要考查扇形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù).通過扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.12、【解析】原式=,故答案為.13、【解析】分析:先移項(xiàng),整理為一元二次方程,讓根的判別式大于0求值即可.詳解:由圖象可知:二次函數(shù)y=ax2+bx+c的頂點(diǎn)坐標(biāo)為(1,1),∴=1,即b2-4ac=-20a,∵ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,∴方程ax2+bx+c-k=0的判別式△>0,即b2-4a(c-k)=b2-4ac+4ak=-20a+4ak=-4a(1-k)>0∵拋物線開口向下∴a<0∴1-k>0∴k<1.故答案為k<1.點(diǎn)睛:本題主要考查了拋物線與x軸的交點(diǎn)問題,以及數(shù)形結(jié)合法;二次函數(shù)中當(dāng)b2-4ac>0時(shí),二次函數(shù)y=ax2+bx+c的圖象與x軸有兩個(gè)交點(diǎn).14、3【解析】分析:因式分解,把已知整體代入求解.詳解:x2y+xy2=xy(x+y)=3.點(diǎn)睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的時(shí)候,要注意整體換元法的靈活應(yīng)用,訓(xùn)練將一個(gè)式子看做一個(gè)整體,利用上述方法因式分解的能力.15、【解析】
設(shè)A點(diǎn)的橫坐標(biāo)為a,把x=a代入得,則點(diǎn)A的坐標(biāo)為(a,).∵AC⊥y軸,AE⊥x軸,∴C點(diǎn)坐標(biāo)為(0,),B點(diǎn)的縱坐標(biāo)為,E點(diǎn)坐標(biāo)為(a,0),D點(diǎn)的橫坐標(biāo)為a.∵B點(diǎn)、D點(diǎn)在上,∴當(dāng)y=時(shí),x=;當(dāng)x=a,y=.∴B點(diǎn)坐標(biāo)為(,),D點(diǎn)坐標(biāo)為(a,).∴AB=a-=,AC=a,AD=-=,AE=.∴AB=AC,AD=AE.又∵∠BAD=∠CAD,∴△BAD∽△CAD.∴.16、4a(x﹣y)(x+y)【解析】
首先提取公因式4a,再利用平方差公式分解因式即可.【詳解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案為4a(x-y)(x+y).【點(diǎn)睛】此題主要考查了提取公因式法以及公式法分解因式,正確運(yùn)用公式是解題關(guān)鍵.三、解答題(共8題,共72分)17、小軍的證明:見解析;小俊的證明:見解析;[變式探究]見解析;[結(jié)論運(yùn)用]PG+PH的值為1;[遷移拓展](6+2)dm【解析】
小軍的證明:連接AP,利用面積法即可證得;小俊的證明:過點(diǎn)P作PG⊥CF,先證明四邊形PDFG為矩形,再證明△PGC≌△CEP,即可得到答案;[變式探究]小軍的證明思路:連接AP,根據(jù)S△ABC=S△ABP﹣S△ACP,即可得到答案;小俊的證明思路:過點(diǎn)C,作CG⊥DP,先證明四邊形CFDG是矩形,再證明△CGP≌△CEP即可得到答案;[結(jié)論運(yùn)用]過點(diǎn)E作EQ⊥BC,先根據(jù)矩形的性質(zhì)求出BF,根據(jù)翻折及勾股定理求出DC,證得四邊形EQCD是矩形,得出BE=BF即可得到答案;[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,證明△ADE∽△BCE得到FA=FB,設(shè)DH=x,利用勾股定理求出x得到BH=6,再根據(jù)∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn)即可得到答案.【詳解】小軍的證明:連接AP,如圖②∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP+S△ACP,∴AB×CF=AB×PD+AC×PE,∵AB=AC,∴CF=PD+PE.小俊的證明:過點(diǎn)P作PG⊥CF,如圖2,∵PD⊥AB,CF⊥AB,PG⊥FC,∴∠CFD=∠FDG=∠FGP=90°,∴四邊形PDFG為矩形,∴DP=FG,∠DPG=90°,∴∠CGP=90°,∵PE⊥AC,∴∠CEP=90°,∴∠PGC=∠CEP,∵∠BDP=∠DPG=90°,∴PG∥AB,∴∠GPC=∠B,∵AB=AC,∴∠B=∠ACB,∴∠GPC=∠ECP,在△PGC和△CEP中,∴△PGC≌△CEP,∴CG=PE,∴CF=CG+FG=PE+PD;[變式探究]小軍的證明思路:連接AP,如圖③,∵PD⊥AB,PE⊥AC,CF⊥AB,∴S△ABC=S△ABP﹣S△ACP,∴AB×CF=AB×PD﹣AC×PE,∵AB=AC,∴CF=PD﹣PE;小俊的證明思路:過點(diǎn)C,作CG⊥DP,如圖③,∵PD⊥AB,CF⊥AB,CG⊥DP,∴∠CFD=∠FDG=∠DGC=90°,∴CF=GD,∠DGC=90°,四邊形CFDG是矩形,∵PE⊥AC,∴∠CEP=90°,∴∠CGP=∠CEP,∵CG⊥DP,AB⊥DP,∴∠CGP=∠BDP=90°,∴CG∥AB,∴∠GCP=∠B,∵AB=AC,∴∠B=∠ACB,∵∠ACB=∠PCE,∴∠GCP=∠ECP,在△CGP和△CEP中,,∴△CGP≌△CEP,∴PG=PE,∴CF=DG=DP﹣PG=DP﹣PE.[結(jié)論運(yùn)用]如圖④過點(diǎn)E作EQ⊥BC,∵四邊形ABCD是矩形,∴AD=BC,∠C=∠ADC=90°,∵AD=8,CF=3,∴BF=BC﹣CF=AD﹣CF=5,由折疊得DF=BF,∠BEF=∠DEF,∴DF=5,∵∠C=90°,∴DC==1,∵EQ⊥BC,∠C=∠ADC=90°,∴∠EQC=90°=∠C=∠ADC,∴四邊形EQCD是矩形,∴EQ=DC=1,∵AD∥BC,∴∠DEF=∠EFB,∵∠BEF=∠DEF,∴∠BEF=∠EFB,∴BE=BF,由問題情景中的結(jié)論可得:PG+PH=EQ,∴PG+PH=1.∴PG+PH的值為1.[遷移拓展]延長(zhǎng)AD,BC交于點(diǎn)F,作BH⊥AF,如圖⑤,∵AD×CE=DE×BC,∴,∵ED⊥AD,EC⊥CB,∴∠ADE=∠BCE=90°,∴△ADE∽△BCE,∴∠A=∠CBE,∴FA=FB,由問題情景中的結(jié)論可得:ED+EC=BH,設(shè)DH=x,∴AH=AD+DH=3+x,∵BH⊥AF,∴∠BHA=90°,∴BH2=BD2﹣DH2=AB2﹣AH2,∵AB=2,AD=3,BD=,∴()2﹣x2=(2)2﹣(3+x)2,∴x=1,∴BH2=BD2﹣DH2=37﹣1=36,∴BH=6,∴ED+EC=6,∵∠ADE=∠BCE=90°,且M,N分別為AE,BE的中點(diǎn),∴DM=EM=AE,CN=EN=BE,∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CN+EN+EC=DE+AE+BE+EC=DE+AB+EC=DE+EC+AB=6+2,∴△DEM與△CEN的周長(zhǎng)之和(6+2)dm.【點(diǎn)睛】此題是一道綜合題,考查三角形全等的判定及性質(zhì),勾股定理,矩形的性質(zhì)定理,三角形的相似的判定及性質(zhì)定理,翻折的性質(zhì),根據(jù)題中小軍和小俊的思路進(jìn)行證明,故正確理解題意由此進(jìn)行后面的證明是解題的關(guān)鍵.18、觀景亭D到南濱河路AC的距離約為248米.【解析】
過點(diǎn)D作DE⊥AC,垂足為E,設(shè)BE=x,根據(jù)AE=DE,列出方程即可解決問題.【詳解】過點(diǎn)D作DE⊥AC,垂足為E,設(shè)BE=x,在Rt△DEB中,tan∠DBE=,∵∠DBC=65°,∴DE=xtan65°.又∵∠DAC=45°,∴AE=DE.∴132+x=xtan65°,∴解得x≈115.8,∴DE≈248(米).∴觀景亭D到南濱河路AC的距離約為248米.19、該雕塑的高度為(2+2)米.【解析】
過點(diǎn)C作CD⊥AB,設(shè)CD=x,由∠CBD=45°知BD=CD=x米,根據(jù)tanA=列出關(guān)于x的方程,解之可得.【詳解】解:如圖,過點(diǎn)C作CD⊥AB,交AB延長(zhǎng)線于點(diǎn)D,設(shè)CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即,解得:x=2+2,答:該雕塑的高度為(2+2)米.【點(diǎn)睛】本題主要考查解直角三角形的應(yīng)用-仰角俯角問題,解題的關(guān)鍵是根據(jù)題意構(gòu)建直角三角形,并熟練掌握三角函數(shù)的應(yīng)用.20、4【解析】
已知△ABC是等腰三角形,根據(jù)等腰三角形的性質(zhì),作于點(diǎn),則直線為的中垂線,直線過點(diǎn),在Rt△OBH中,用半徑表示出OH的長(zhǎng),即可用勾股定理求得半徑的長(zhǎng).【詳解】作于點(diǎn),則直線為的中垂線,直線過點(diǎn),,,,即,.【點(diǎn)睛】考查垂徑定理以及勾股定理,掌握垂徑定理是解題的關(guān)鍵.21、(1)y=0.2x+14(0<x<35);(2)該公司至少需要投入資金16.4萬元.【解析】
(1)根據(jù)題意列出關(guān)于x、y的方程,整理得到y(tǒng)關(guān)于x的函數(shù)解析式;(2)解不等式求出x的范圍,根據(jù)一次函數(shù)的性質(zhì)計(jì)算即可.【詳解】解:(1)由題意得,0.6x+0.4×(35﹣x)=y,整理得,y=0.2x+14(0<x<35);(2)由題意得,35﹣x≤2x,解得,x≥,則x的最小整數(shù)為12,∵k=0.2>0,∴y隨x的增大而增大,∴當(dāng)x=12時(shí),y有最小值16.4,答:該公司至少需要投入資金16.4萬元.【點(diǎn)睛】本題考查的是一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,掌握一次函數(shù)的性質(zhì)是解題的關(guān)鍵.22、(1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 開放式基金交易服務(wù)合同
- 2024簡(jiǎn)單銷售代理合同樣本
- 合同范本:委托招商引資協(xié)議書
- 二手車購(gòu)車合同協(xié)議樣本
- 2024照明購(gòu)銷合同
- 企業(yè)與高校就業(yè)實(shí)習(xí)協(xié)議書參考
- 代理公司注冊(cè)登記協(xié)議書
- 培訓(xùn)機(jī)構(gòu)老師合作協(xié)議示例
- 正規(guī)版房屋租賃合同協(xié)議范本
- 全面聘用合同范本匯編
- 浙江省紹興市諸暨市2023-2024學(xué)年七年級(jí)上學(xué)期期末語(yǔ)文試題
- 酒精性肝硬化查房
- 2024年學(xué)校禁毒安全工作計(jì)劃
- 透析中合并心衰護(hù)理課件
- 初中數(shù)學(xué)因式分解練習(xí)題100題附詳解
- 新生兒臍疝與護(hù)理課件
- 提升班組學(xué)習(xí)能力的組織與培訓(xùn)方法
- 2024屆高考語(yǔ)文復(fù)習(xí):小說敘述特色專題復(fù)習(xí) 課件
- 慢性病的心理預(yù)防及調(diào)適護(hù)理課件
- 2024年銀行考試-招商銀行歷年考試高頻考點(diǎn)試題附帶答案
- 2024肺栓塞指南解讀2024
評(píng)論
0/150
提交評(píng)論