人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 第四章 指數(shù)函數(shù)與對(duì)數(shù)函數(shù) 章末重點(diǎn)題型大總結(jié)(教師版)_第1頁
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 第四章 指數(shù)函數(shù)與對(duì)數(shù)函數(shù) 章末重點(diǎn)題型大總結(jié)(教師版)_第2頁
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 第四章 指數(shù)函數(shù)與對(duì)數(shù)函數(shù) 章末重點(diǎn)題型大總結(jié)(教師版)_第3頁
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 第四章 指數(shù)函數(shù)與對(duì)數(shù)函數(shù) 章末重點(diǎn)題型大總結(jié)(教師版)_第4頁
人教A版高中數(shù)學(xué)(必修第一冊(cè))同步講義 第四章 指數(shù)函數(shù)與對(duì)數(shù)函數(shù) 章末重點(diǎn)題型大總結(jié)(教師版)_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁第四章指數(shù)函數(shù)與對(duì)數(shù)函數(shù)章末題型大總結(jié)一、思維導(dǎo)圖二、題型精講題型01有關(guān)指數(shù)、對(duì)數(shù)的運(yùn)算【典例1】(2023春·四川雅安·高二統(tǒng)考期末)計(jì)算:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0【典例2】(2022秋·四川成都·高一石室中學(xué)校考期中)求下列各式的值:(1)計(jì)算:SKIPIF1<0;(2)若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.【變式1】(2023春·吉林長春·高二長春外國語學(xué)校??计谀?)已知SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的值;(2)SKIPIF1<0【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【詳解】(1)SKIPIF1<0;(2)SKIPIF1<0.【變式2】(2023·全國·高三專題練習(xí))計(jì)算(1)SKIPIF1<0.(2)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)2【詳解】(1)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0=2題型02數(shù)的大小比較問題【典例1】(2023春·貴州六盤水·高一統(tǒng)考期末)設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由對(duì)數(shù)函數(shù)的性質(zhì),可得SKIPIF1<0,又由指數(shù)函數(shù)的性質(zhì),可得SKIPIF1<0,由冪函數(shù)SKIPIF1<0在SKIPIF1<0為單調(diào)遞增函數(shù),可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0.故選:D.【典例2】(2021秋·廣東汕尾·高一海豐縣海城仁榮中學(xué)校考階段練習(xí))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,綜上,SKIPIF1<0.故選:C.【變式1】(2023春·廣西北海·高二統(tǒng)考期末)設(shè)SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0故選:A.【變式2】(2023春·河南安陽·高二統(tǒng)考期末)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,因此SKIPIF1<0,故選:C.題型03定義域問題【典例1】(云南省紅河哈尼族彝族自治州2022-2023學(xué)年高一下學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測(cè)數(shù)學(xué)試題)函數(shù)SKIPIF1<0的定義域?yàn)椋?/p>

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】由題得SKIPIF1<0,解得SKIPIF1<0且SKIPIF1<0.故選:A.【典例2】(2023春·重慶永川·高一重慶市永川北山中學(xué)校??奸_學(xué)考試)已知函數(shù)SKIPIF1<0是定義在R上的增函數(shù),則實(shí)數(shù)a的取值范圍是.【答案】SKIPIF1<0【詳解】∵函數(shù)SKIPIF1<0在R上單調(diào)遞增,∴SKIPIF1<0,即實(shí)數(shù)a的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023春·北京順義·高二牛欄山一中??计谀┖瘮?shù)SKIPIF1<0的定義域?yàn)?【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則實(shí)數(shù)m的取值范圍是.【答案】SKIPIF1<0【詳解】由函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,得SKIPIF1<0,SKIPIF1<0恒成立.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,成立;當(dāng)SKIPIF1<0時(shí),需滿足SKIPIF1<0于是SKIPIF1<0.綜上所述,m的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.題型04值域問題【典例1】(2023·全國·高三專題練習(xí))函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為.【答案】SKIPIF1<0【詳解】SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0.故答案為:SKIPIF1<0【典例2】(2023春·陜西榆林·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0的奇偶性并予以證明;(2)若存在SKIPIF1<0使得不等式SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的最大值.【答案】(1)偶函數(shù),證明見解析(2)1【詳解】(1)函數(shù)SKIPIF1<0為偶函數(shù),證明如下:SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0的定義域?yàn)镾KIPIF1<0,關(guān)于原點(diǎn)對(duì)稱,SKIPIF1<0,SKIPIF1<0為偶函數(shù).(2)若存在SKIPIF1<0使得不等式SKIPIF1<0成立,SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0實(shí)數(shù)SKIPIF1<0的最大值為1.【典例3】(2023春·江蘇揚(yáng)州·高一統(tǒng)考開學(xué)考試)已知函數(shù)SKIPIF1<0,且SKIPIF1<0.(1)求實(shí)數(shù)a的值,并用單調(diào)性定義證明SKIPIF1<0在SKIPIF1<0上單調(diào)遞增;(2)若當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的最大值為SKIPIF1<0,求實(shí)數(shù)m的值.【答案】(1)a=1,證明見解析(2)2【詳解】(1)由SKIPIF1<0得a=1.任取SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.(2)由(1)知SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,即SKIPIF1<0,解得m=2或SKIPIF1<0(舍去),所以m=2.【典例4】(2023春·河南焦作·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)若SKIPIF1<0,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上存在零點(diǎn),求SKIPIF1<0的取值范圍;(2)若a>1,且對(duì)任意SKIPIF1<0,都有SKIPIF1<0,使得SKIPIF1<0成立,求a的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0.【詳解】(1)函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則由零點(diǎn)存在定理可得SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.(2)若對(duì)任意SKIPIF1<0,都有SKIPIF1<0,使得SKIPIF1<0成立,則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.因?yàn)閍>1,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞減,SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.當(dāng)1<a<2時(shí),SKIPIF1<0,SKIPIF1<0,不符合條件,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,符合條件,所以a的取值范圍是SKIPIF1<0.【變式1】(2023·全國·高三專題練習(xí))已知函數(shù)SKIPIF1<0,對(duì)SKIPIF1<0都有SKIPIF1<0成立,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,因?yàn)閷?duì)SKIPIF1<0都有SKIPIF1<0成立,所以SKIPIF1<0,故答案為:SKIPIF1<0【變式2】(2023秋·云南紅河·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的解集;(2)求函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上的最小值SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.所以不等式SKIPIF1<0的解集為SKIPIF1<0.(2)易知SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,則①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0.②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0③當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0綜上SKIPIF1<0.【變式3】(2023春·河南新鄉(xiāng)·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)求不等式SKIPIF1<0的解集;(2)若不等式SKIPIF1<0對(duì)SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)令SKIPIF1<0,則不等式SKIPIF1<0即為SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞增,SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在定義域SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,所以SKIPIF1<0時(shí)SKIPIF1<0,即不等式SKIPIF1<0的解集為SKIPIF1<0.(2)由SKIPIF1<0對(duì)SKIPIF1<0恒成立,可得SKIPIF1<0對(duì)SKIPIF1<0恒成立,令SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)取等號(hào),所以SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.【變式4】(2023春·新疆昌吉·高二統(tǒng)考期末)已知SKIPIF1<0(實(shí)數(shù)b為常數(shù)).(1)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的定義域D;(2)若不等式SKIPIF1<0當(dāng)SKIPIF1<0時(shí)恒成立,求實(shí)數(shù)b的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0或SKIPIF1<0,解之得SKIPIF1<0或SKIPIF1<0,即SKIPIF1<0.(2)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0為單調(diào)遞增函數(shù),故SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0且SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,即b的取值范圍為SKIPIF1<0.題型05指數(shù)(型)函數(shù)的圖象與性質(zhì)【典例1】(2023秋·廣西河池·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】作出SKIPIF1<0的圖象,如圖所示:

由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0.故選:D.【典例2】(2023春·陜西寶雞·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)試判斷函數(shù)的單調(diào)性,并加以證明;(2)若關(guān)于SKIPIF1<0的方程SKIPIF1<0在SKIPIF1<0上有解,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)在SKIPIF1<0上單調(diào)遞增,證明見解析(2)SKIPIF1<0【詳解】(1)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,證明如下:任取SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.(2)由(1)可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上的值域?yàn)镾KIPIF1<0,所以m的取值范圍是SKIPIF1<0.【典例3】(2023春·福建·高二統(tǒng)考學(xué)業(yè)考試)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0的定義域;(2)若SKIPIF1<0為奇函數(shù),求m的值;(3)當(dāng)SKIPIF1<0時(shí),不等SKIPIF1<0在SKIPIF1<0恒成立,求k的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)依題意可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0.(2)若SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(3)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以不等式SKIPIF1<0在SKIPIF1<0恒成立,即SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0取等,所以SKIPIF1<0.故k的取值范圍為SKIPIF1<0.【變式1】(多選)(2023·全國·高三專題練習(xí))(多選)已知函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)的圖象如圖所示,則下列結(jié)論正確的是()

A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【詳解】由圖象可知,函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,可得SKIPIF1<0.對(duì)于A選項(xiàng),SKIPIF1<0,A對(duì);對(duì)于B選項(xiàng),SKIPIF1<0,B對(duì);對(duì)于C選項(xiàng),SKIPIF1<0,C錯(cuò);對(duì)于D選項(xiàng),由題意可知,SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,D對(duì).故選:ABD.【變式2】(2023春·湖北荊州·高一校聯(lián)考期中)已知函數(shù)SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0的定義域是SKIPIF1<0時(shí),此時(shí)值域也是SKIPIF1<0.(1)求SKIPIF1<0的值;(2)若SKIPIF1<0,證明SKIPIF1<0為奇函數(shù),并求不等式SKIPIF1<0的解集.【答案】(1)SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0(2)證明見解析,SKIPIF1<0【詳解】(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞減,且SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0,解得SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0單調(diào)遞增,且SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0,解得SKIPIF1<0.綜上,SKIPIF1<0,SKIPIF1<0或SKIPIF1<0,SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,定義域?yàn)镾KIPIF1<0,且函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0為奇函數(shù).則不等式SKIPIF1<0,可化為SKIPIF1<0.又函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0,所以不等式SKIPIF1<0的解集為SKIPIF1<0.【變式3】(2023春·江蘇南京·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),解不等式SKIPIF1<0;(2)當(dāng)SKIPIF1<0對(duì)SKIPIF1<0恒成立時(shí),求整數(shù)SKIPIF1<0的最小值.【答案】(1)SKIPIF1<0(2)4【詳解】(1)當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0,解得SKIPIF1<0.即SKIPIF1<0(2)因?yàn)镾KIPIF1<0,所以可得SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0所以SKIPIF1<0,令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,所以整數(shù)SKIPIF1<0的最小值為4.題型06對(duì)數(shù)(型)函數(shù)的圖象與性質(zhì)【典例1】(2023春·湖北荊門·高二統(tǒng)考期末)設(shè)函數(shù)SKIPIF1<0在定義域SKIPIF1<0上滿足SKIPIF1<0,若SKIPIF1<0在SKIPIF1<0上是減函數(shù),且SKIPIF1<0,則不等式SKIPIF1<0的解集為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】由SKIPIF1<0,可得SKIPIF1<0為SKIPIF1<0上的奇函數(shù),且SKIPIF1<0.因?yàn)镾KIPIF1<0在SKIPIF1<0上是減函數(shù),所以SKIPIF1<0在SKIPIF1<0上是減函數(shù).又SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.所以不等式SKIPIF1<0的解集為SKIPIF1<0.故選:D.【典例2】(2023春·陜西寶雞·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0的最小值為0,則實(shí)數(shù)SKIPIF1<0的取值范圍是.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0最小值為0,設(shè)SKIPIF1<0,所以只要滿足SKIPIF1<0恒成立,函數(shù)對(duì)稱軸為SKIPIF1<0,且SKIPIF1<0,①SKIPIF1<0,即SKIPIF1<0時(shí),滿足題意;②SKIPIF1<0,即SKIPIF1<0時(shí),需滿足SKIPIF1<0,即SKIPIF1<0,得SKIPIF1<0,此時(shí)實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0.綜上,實(shí)數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0故答案為:SKIPIF1<0.【典例3】(2023春·浙江麗水·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0是偶函數(shù).(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)若實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,求SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0或SKIPIF1<0【詳解】(1)由已知可得,SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0是偶函數(shù),所以SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,即SKIPIF1<0對(duì)任意SKIPIF1<0恒成立,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0可得,SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,即SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0.(2)SKIPIF1<0.令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,根據(jù)對(duì)勾函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又SKIPIF1<0單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又函數(shù)SKIPIF1<0單調(diào)遞增,根據(jù)復(fù)合函數(shù)的單調(diào)性可知,SKIPIF1<0在SKIPIF1<0上單調(diào)遞增.又因?yàn)楹瘮?shù)SKIPIF1<0為偶函數(shù),所以有SKIPIF1<0,SKIPIF1<0.所以,由SKIPIF1<0即可得出SKIPIF1<0,所以,SKIPIF1<0.平方整理可得,SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.【典例4】(2023秋·重慶長壽·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0為奇函數(shù).(1)求實(shí)數(shù)SKIPIF1<0的值,判斷函數(shù)SKIPIF1<0的單調(diào)性并用定義證明;(2)求關(guān)于SKIPIF1<0的不等式SKIPIF1<0的解集.【答案】(1)SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是增函數(shù),證明見解析(2)SKIPIF1<0或SKIPIF1<0.【詳解】(1)解:因?yàn)镾KIPIF1<0的定義域是SKIPIF1<0且SKIPIF1<0是奇函數(shù),可得SKIPIF1<0,可得SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上是增函數(shù),證明如下:任取SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,因?yàn)镾KIPIF1<0為增函數(shù),且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是增函數(shù).(2)解:由(1)知SKIPIF1<0在SKIPIF1<0上是增函數(shù),且SKIPIF1<0,則不等式SKIPIF1<0,即為SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以不等式的解集為SKIPIF1<0或SKIPIF1<0.【變式1】(2023春·廣西北?!じ叨y(tǒng)考期末)設(shè)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的最大值為.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0,根據(jù)基本不等式有SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0.則SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2023春·山東日照·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0是偶函數(shù).(1)求k的值;(2)若方程SKIPIF1<0有解,求實(shí)數(shù)m的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)由已知可得,SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0為R上的偶函數(shù),所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0恒成立,所以SKIPIF1<0,解得SKIPIF1<0,經(jīng)檢驗(yàn),SKIPIF1<0滿足題意,故SKIPIF1<0.(2)由(1)知,SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,則SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.因?yàn)榉匠蘏KIPIF1<0有解,即SKIPIF1<0有解,所以SKIPIF1<0,即SKIPIF1<0.【變式3】(2023·全國·高一假期作業(yè))已知函數(shù)SKIPIF1<0為定義在SKIPIF1<0上的偶函數(shù),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0.(1)求a的值:(2)求SKIPIF1<0的解析式;(3)求不等式SKIPIF1<0的解集.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)解:因?yàn)楫?dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象過點(diǎn)SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.(2)設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0.

因?yàn)镾KIPIF1<0為定義在SKIPIF1<0上的偶函數(shù),則SKIPIF1<0.

綜上所述,SKIPIF1<0(3)由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0

解得SKIPIF1<0或SKIPIF1<0.

故不等式SKIPIF1<0的解集為SKIPIF1<0.題型07函數(shù)與方程【典例1】(2023春·河南商丘·高二商丘市第一高級(jí)中學(xué)??计谀┮阎瘮?shù)SKIPIF1<0,則函數(shù)SKIPIF1<0的零點(diǎn)的個(gè)數(shù)是(

)A.3 B.4 C.5 D.6【答案】D【詳解】令SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由于SKIPIF1<0,由零點(diǎn)存在定理可知,存在SKIPIF1<0,使得SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,由SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0.作出函數(shù)SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的圖象如下圖所示:

由圖象可知,直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有三個(gè)交點(diǎn);直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有兩個(gè)交點(diǎn);直線SKIPIF1<0與函數(shù)SKIPIF1<0的圖象有且只有一個(gè)交點(diǎn).綜上所述,函數(shù)SKIPIF1<0的零點(diǎn)個(gè)數(shù)為SKIPIF1<0.故選:D.【典例2】(多選)(2023春·陜西西安·高一西安市鐵一中學(xué)校考期末)已知函數(shù)SKIPIF1<0,若函數(shù)SKIPIF1<0有三個(gè)零點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則下列結(jié)論正確的是(

)A.m的取值范圍為SKIPIF1<0 B.SKIPIF1<0的取值范圍為SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0最大值為1【答案】AC【詳解】函數(shù)SKIPIF1<0圖象如圖所示:

由圖可得SKIPIF1<0,A正確;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0,B錯(cuò)誤;又SKIPIF1<0且SKIPIF1<0,故SKIPIF1<0,可得SKIPIF1<0,C正確又SKIPIF1<0可得SKIPIF1<0,又SKIPIF1<0,故等號(hào)不成立,即SKIPIF1<0,D錯(cuò)誤,故選:AC.【典例3】(2023春·山東煙臺(tái)·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,若方程SKIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為.【答案】SKIPIF1<0【詳解】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)榉匠蘏KIPIF1<0有兩個(gè)不相等的實(shí)數(shù)根,如圖,

所以SKIPIF1<0,即SKIPIF1<0.若SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)方程SKIPIF1<0有1個(gè)解,如圖,

當(dāng)SKIPIF1<0時(shí),方程SKIPIF1<0有1個(gè)解需滿足SKIPIF1<0,即SKIPIF1<0.綜上所述,實(shí)數(shù)a的取值范圍為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(多選)(2023春·山東德州·高二統(tǒng)考期末)已知函數(shù)SKIPIF1<0,SKIPIF1<0,下列說法正確的是(

)A.若SKIPIF1<0是偶函數(shù),則SKIPIF1<0B.SKIPIF1<0的單調(diào)減區(qū)間是SKIPIF1<0C.SKIPIF1<0的值域是SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0有兩個(gè)零點(diǎn)【答案】ABD【詳解】對(duì)于A,若SKIPIF1<0是偶函數(shù),定義域?yàn)镾KIPIF1<0,對(duì)于任意的SKIPIF1<0,由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,A正確,對(duì)于B,SKIPIF1<0由SKIPIF1<0復(fù)合而成,由于SKIPIF1<0在SKIPIF1<0單調(diào)遞減,開口向上的二次函數(shù)SKIPIF1<0在SKIPIF1<0單調(diào)遞增,所以由復(fù)合函數(shù)單調(diào)性的判斷可知SKIPIF1<0的單調(diào)減區(qū)間是SKIPIF1<0,B正確,對(duì)于C,由B可知,SKIPIF1<0的單調(diào)減區(qū)間是SKIPIF1<0,單調(diào)增區(qū)間為SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取最大值,故SKIPIF1<0,故SKIPIF1<0值域?yàn)镾KIPIF1<0,故C錯(cuò)誤,對(duì)于D,由C可知SKIPIF1<0值域?yàn)镾KIPIF1<0,如圖:當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,所以SKIPIF1<0有兩個(gè)交點(diǎn),故D正確,

故選:ABD【變式2】(2023秋·云南紅河·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.函數(shù)SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),若函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有20個(gè)零點(diǎn),則實(shí)數(shù)SKIPIF1<0的取值范圍為.【答案】SKIPIF1<0【詳解】函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上恰有20個(gè)零點(diǎn),則函數(shù)SKIPIF1<0圖象與函數(shù)SKIPIF1<0圖象在區(qū)間SKIPIF1<0上有20個(gè)交點(diǎn),由SKIPIF1<0知,SKIPIF1<0是周期為2的函數(shù),作函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的部分圖象如下:

易知當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0圖象與函數(shù)SKIPIF1<0圖象有17個(gè)交點(diǎn),故在SKIPIF1<0上有3個(gè)交點(diǎn),顯然SKIPIF1<0不滿足題意,所以則需SKIPIF1<0,解得SKIPIF1<0故答案為:SKIPIF1<0【變式3】(2023秋·山西運(yùn)城·高一統(tǒng)考期末)已知函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0,SKIPIF1<0,求函數(shù)SKIPIF1<0的最小值;(2)設(shè)SKIPIF1<0,若函數(shù)SKIPIF1<0與SKIPIF1<0圖象有SKIPIF1<0個(gè)公共點(diǎn),求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)解:因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則二次函數(shù)SKIPIF1<0的對(duì)稱軸方程為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),即當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.綜上:SKIPIF1<0.(2)解:SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0與SKIPIF1<0圖象有SKIPIF1<0個(gè)公共點(diǎn),由SKIPIF1<0可得SKIPIF1<0且SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,又因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以方程SKIPIF1<0有兩個(gè)不等的正根,所以,SKIPIF1<0,解得SKIPIF1<0,因此,實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0.題型08函數(shù)模型及其應(yīng)用【典例1】(2023春·湖南長沙·高一湖南師大附中??计谀┠辰虒W(xué)軟件在剛發(fā)布時(shí)有100名教師用戶,發(fā)布5天后有1000名教師用戶,如果教師用戶人數(shù)SKIPIF1<0與天數(shù)t之間滿足關(guān)系式:SKIPIF1<0,其中SKIPIF1<0為常數(shù),SKIPIF1<0是剛發(fā)布的時(shí)間,則教師用戶超過30000名至少經(jīng)過的天數(shù)為(

)(參考數(shù)據(jù):SKIPIF1<0)A.11 B.12 C.13 D.14【答案】C【詳解】由題意得SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以教師用戶超過20000名至少經(jīng)過SK

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論