新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題06 向量專題(新定義)(解析版)_第1頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題06 向量專題(新定義)(解析版)_第2頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題06 向量專題(新定義)(解析版)_第3頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題06 向量專題(新定義)(解析版)_第4頁(yè)
新高考數(shù)學(xué)二輪復(fù)習(xí)創(chuàng)新題型專題06 向量專題(新定義)(解析版)_第5頁(yè)
已閱讀5頁(yè),還剩36頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題06向量專題(新定義)一、單選題1.(2023·全國(guó)·高三專題練習(xí))定義平面向量之間的一種運(yùn)算“⊙”如下:對(duì)任意的SKIPIF1<0.令SKIPIF1<0,下面說(shuō)法錯(cuò)誤的是(

)A.若SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0B.SKIPIF1<0C.對(duì)任意的SKIPIF1<0,SKIPIF1<0,D.SKIPIF1<0【答案】B【分析】根據(jù)給出的運(yùn)算“⊙”的新定義,結(jié)合已知的向量的數(shù)量積公式及模長(zhǎng)公式逐項(xiàng)判斷即可.【詳解】若SKIPIF1<0與SKIPIF1<0共線,則有SKIPIF1<0,故A正確;SKIPIF1<0,而SKIPIF1<0,SKIPIF1<0,故選項(xiàng)B錯(cuò)誤;對(duì)任意的SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,故C正確;SKIPIF1<0,又SKIPIF1<0,故D正確.故選:B.2.(2022春·湖南邵陽(yáng)·高一統(tǒng)考期中)定義SKIPIF1<0.若向量SKIPIF1<0,向量SKIPIF1<0為單位向量,則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】求得SKIPIF1<0,設(shè)SKIPIF1<0,整理可得SKIPIF1<0為關(guān)于SKIPIF1<0的關(guān)系式,進(jìn)而求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,由向量SKIPIF1<0為單位向量,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故選:B3.(2021春·云南昆明·高一云南師大附中??计谥校┢矫鎯?nèi)任意給定一點(diǎn)SKIPIF1<0和兩個(gè)不共線的向量SKIPIF1<0,SKIPIF1<0,由平面向量基本定理,平面內(nèi)任何一個(gè)向量SKIPIF1<0都可以唯一表示成SKIPIF1<0,SKIPIF1<0的線性組合,SKIPIF1<0,則把有序數(shù)組SKIPIF1<0稱為SKIPIF1<0在仿射坐標(biāo)系SKIPIF1<0下的坐標(biāo),記為SKIPIF1<0,在仿射坐標(biāo)系SKIPIF1<0下,SKIPIF1<0,SKIPIF1<0為非零向量,且SKIPIF1<0,SKIPIF1<0,則下列結(jié)論中(

)①SKIPIF1<0②若SKIPIF1<0,則SKIPIF1<0③若SKIPIF1<0,則SKIPIF1<0

④SKIPIF1<0一定成立的結(jié)論個(gè)數(shù)是(

)A.1 B.2 C.3 D.4【答案】B【分析】利用向量的新定義結(jié)合向量的性質(zhì)逐個(gè)分析判斷即可【詳解】在仿射坐標(biāo)系SKIPIF1<0下,設(shè)SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,①正確;若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故②不一定正確;因?yàn)镾KIPIF1<0,所以存在唯一的實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以③正確;SKIPIF1<0,由②知,SKIPIF1<0,所以④不一定正確,所以正確的有2個(gè),故選:B4.(2022·高一單元測(cè)試)若對(duì)于一些橫縱坐標(biāo)均為整數(shù)的向量,它們的模相同,但坐標(biāo)不同,則稱這些向量為“等模整向量”,例如向量SKIPIF1<0,即為“等模整向量”,那么模為SKIPIF1<0的“等模整向量”有(

)A.4個(gè) B.6個(gè) C.8個(gè) D.12個(gè)【答案】D【分析】把SKIPIF1<0,分別寫出向量即可.【詳解】因?yàn)镾KIPIF1<0所以模為SKIPIF1<0的等模整向量有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0所以模為SKIPIF1<0的等模整向量共有12個(gè).故選:SKIPIF1<0【點(diǎn)睛】在求向量模的有關(guān)問(wèn)題時(shí)通常的處理方法有:(1)a2=a·a=|a|2或SKIPIF1<0;(2)SKIPIF1<0=SKIPIF1<0=SKIPIF1<0;(3)若a=(x,y),則|a|=SKIPIF1<0.5.(2017·四川廣元·統(tǒng)考三模)對(duì)于SKIPIF1<0個(gè)向量SKIPIF1<0,若存在SKIPIF1<0個(gè)不全為0的示數(shù)SKIPIF1<0,使得:SKIPIF1<0成立;則稱向量SKIPIF1<0是線性相關(guān)的,按此規(guī)定,能使向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0線性相關(guān)的實(shí)數(shù)SKIPIF1<0,則SKIPIF1<0的值為(

)A.SKIPIF1<0 B.0 C.1 D.2【答案】B【分析】由題可得SKIPIF1<0,結(jié)合條件可得SKIPIF1<0,即得.【詳解】由題可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,兩等式兩邊相加可得SKIPIF1<0.故選:B.6.(2022秋·內(nèi)蒙古鄂爾多斯·高三統(tǒng)考期中)對(duì)任意兩個(gè)非零的平面向量SKIPIF1<0,定義SKIPIF1<0,若平面向量SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0的夾角SKIPIF1<0,且SKIPIF1<0和SKIPIF1<0都在集合SKIPIF1<0中,則SKIPIF1<0=(

)A.SKIPIF1<0 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意可可設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,得SKIPIF1<0,對(duì)SKIPIF1<0,SKIPIF1<0進(jìn)行賦值即可得出SKIPIF1<0,SKIPIF1<0的值,進(jìn)而得出結(jié)論.【詳解】解:SKIPIF1<0,故SKIPIF1<0.又由SKIPIF1<0,可設(shè)SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0又夾角SKIPIF1<0,所以SKIPIF1<0,對(duì)SKIPIF1<0,SKIPIF1<0進(jìn)行賦值即可得出SKIPIF1<0所以SKIPIF1<0.故選:C.7.(2023·全國(guó)·高三專題練習(xí))互相垂直且有公共原點(diǎn)的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,但如果平面坐標(biāo)系中兩條坐標(biāo)軸不垂直,則這樣的坐標(biāo)系稱為“斜坐標(biāo)系”.如圖,在斜坐標(biāo)系中,過(guò)點(diǎn)P作兩坐標(biāo)軸的平行線,其在x軸和y軸上的截距a,b分別作為點(diǎn)P的x坐標(biāo)和y坐標(biāo),記SKIPIF1<0,則在x軸正方向和y軸正方向的夾角為SKIPIF1<0的斜坐標(biāo)系中,下列選項(xiàng)錯(cuò)誤的是(

)A.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0與SKIPIF1<0距離為SKIPIF1<0B.點(diǎn)SKIPIF1<0關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為SKIPIF1<0C.向量SKIPIF1<0與SKIPIF1<0平行的充要條件是SKIPIF1<0D.點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0【答案】D【分析】根據(jù)“斜坐標(biāo)系”的定義,結(jié)合向量運(yùn)算對(duì)選項(xiàng)進(jìn)行分析,從而確定正確答案.【詳解】設(shè)SKIPIF1<0軸正方向的單位向量為SKIPIF1<0,SKIPIF1<0軸正方向的單位向量為SKIPIF1<0,對(duì)于A選項(xiàng):由已知得SKIPIF1<0,所以SKIPIF1<0.由SKIPIF1<0及斜坐標(biāo)的定義可知SKIPIF1<0,SKIPIF1<0SKIPIF1<0,故A選項(xiàng)正確;對(duì)于B選項(xiàng):根據(jù)“斜坐標(biāo)系”的定義可知:點(diǎn)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為SKIPIF1<0,則SKIPIF1<0,由于SKIPIF1<0不共線,所以SKIPIF1<0,故B選項(xiàng)正確;對(duì)于C選項(xiàng):SKIPIF1<0,若SKIPIF1<0是零向量,則SKIPIF1<0成立,同時(shí)SKIPIF1<0,所以SKIPIF1<0成立,此時(shí)SKIPIF1<0;若SKIPIF1<0是非零向量,則SKIPIF1<0存在非零常數(shù)SKIPIF1<0,使SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故C選項(xiàng)正確;對(duì)于D選項(xiàng):設(shè)直線SKIPIF1<0上的動(dòng)點(diǎn)為SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,設(shè)SKIPIF1<0,則點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,所以直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0.所以SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)A到直線SKIPIF1<0的距離為SKIPIF1<0,故D選項(xiàng)錯(cuò)誤.故選:D8.(2022春·黑龍江大慶·高三大慶實(shí)驗(yàn)中學(xué)??茧A段練習(xí))如圖所示,設(shè)Ox,Oy是平面內(nèi)相交成SKIPIF1<0角的兩條數(shù)軸,SKIPIF1<0分別是與x,y軸正方向同向的單位向量,則稱平面坐標(biāo)系xOy為SKIPIF1<0斜坐標(biāo)系,若SKIPIF1<0,則把有序數(shù)對(duì)SKIPIF1<0叫做向量SKIPIF1<0的斜坐標(biāo),記為SKIPIF1<0.在SKIPIF1<0的斜坐標(biāo)系中,SKIPIF1<0﹒則下列結(jié)論中,錯(cuò)誤的是(

)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0在SKIPIF1<0上的投影為SKIPIF1<0A.②③ B.②④ C.③④ D.②③④【答案】D【分析】借鑒單位向量夾角為SKIPIF1<0時(shí)的情況,注意夾角為SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;數(shù)量積為SKIPIF1<0;SKIPIF1<0在SKIPIF1<0上的投影為SKIPIF1<0.【詳解】對(duì)于①.SKIPIF1<0,所以SKIPIF1<0,故①正確;對(duì)于②.SKIPIF1<0,故②錯(cuò)誤;對(duì)于③.SKIPIF1<0,故③錯(cuò)誤;對(duì)于④.SKIPIF1<0在SKIPIF1<0上的投影為SKIPIF1<0,故④錯(cuò)誤.故選:D9.(2021春·上海浦東新·高一華師大二附中??茧A段練習(xí))如圖,定義SKIPIF1<0、SKIPIF1<0的向量積SKIPIF1<0,SKIPIF1<0為當(dāng)SKIPIF1<0、SKIPIF1<0的起點(diǎn)相同時(shí),由SKIPIF1<0的方向逆時(shí)針旋轉(zhuǎn)到與SKIPIF1<0方向相同時(shí),旋轉(zhuǎn)過(guò)的最小角,對(duì)于SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的向量積有如下的五個(gè)結(jié)論:①SKIPIF1<0;

②SKIPIF1<0;③SKIPIF1<0;

④SKIPIF1<0;⑤SKIPIF1<0;其中正確結(jié)論的個(gè)數(shù)為(

)A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)【答案】C【分析】結(jié)合題目中的新定義的概念逐項(xiàng)分析即可得出結(jié)論.【詳解】①SKIPIF1<0至少有一個(gè)為0時(shí),顯然成立;SKIPIF1<0都不為0時(shí),若SKIPIF1<0,則SKIPIF1<0;若SKIPIF1<0,則SKIPIF1<0;綜上:SKIPIF1<0,故①正確;②SKIPIF1<0,所以SKIPIF1<0,故②錯(cuò)誤;③SKIPIF1<0,故③正確;

④由③知:SKIPIF1<0,故④正確;⑤SKIPIF1<0SKIPIF1<0與SKIPIF1<0不一定相等,故⑤錯(cuò)誤;故選:C.10.(2022春·山西朔州·高一校考階段練習(xí))定義SKIPIF1<0為兩個(gè)向量SKIPIF1<0,SKIPIF1<0間的“距離”,若向量SKIPIF1<0,SKIPIF1<0滿足下列條件:(ⅰ)SKIPIF1<0;(ⅱ)SKIPIF1<0;(ⅲ)對(duì)于任意的SKIPIF1<0,恒有SKIPIF1<0,現(xiàn)給出下面結(jié)論的編號(hào),①.SKIPIF1<0②.SKIPIF1<0③.SKIPIF1<0④.SKIPIF1<0⑤.SKIPIF1<0則以上正確的編號(hào)為(

)A.①③ B.②④ C.③④ D.①⑤【答案】B【分析】根據(jù)題意可得SKIPIF1<0,轉(zhuǎn)化為SKIPIF1<0對(duì)于任意的SKIPIF1<0恒成立,即SKIPIF1<0,整理得SKIPIF1<0,再利用向量的數(shù)量積逐一判斷即可.【詳解】由于SKIPIF1<0,又對(duì)于SKIPIF1<0,恒有SKIPIF1<0,顯然有SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0對(duì)于任意的SKIPIF1<0恒成立,顯然有SKIPIF1<0成立,即SKIPIF1<0,則SKIPIF1<0,故序號(hào)①錯(cuò)誤,進(jìn)而SKIPIF1<0,∵SKIPIF1<0,于是SKIPIF1<0,得SKIPIF1<0,即序號(hào)④正確.再由SKIPIF1<0得SKIPIF1<0,得SKIPIF1<0,∴SKIPIF1<0,顯然序號(hào)②正確.從而序號(hào)③錯(cuò)誤,再由②SKIPIF1<0,故序號(hào)⑤錯(cuò)誤.綜上知本題正確的序號(hào)為②④.故選:B.【點(diǎn)睛】本題命制是以新定義為背景,考查向量長(zhǎng)度及數(shù)量積等知識(shí)概念,同時(shí)考查了等價(jià)轉(zhuǎn)換、不等式恒成立問(wèn)題,符合以生考熟的高考理念,考查知識(shí)內(nèi)容源于教材,試題面向全體考生,不同思維能力層次的考生度可以利用熟悉的通法來(lái)解決問(wèn)題,從而增強(qiáng)考生的自信心,有利于考生正常發(fā)揮,屬于中檔題.11.(2018·湖南·統(tǒng)考一模)在實(shí)數(shù)集SKIPIF1<0中,我們定義的大小關(guān)系“SKIPIF1<0”為全體實(shí)數(shù)排了一個(gè)“序”,類似的,我們這平面向量集合SKIPIF1<0上也可以定義一個(gè)稱為“序”的關(guān)系,記為“SKIPIF1<0”.定義如下:對(duì)于任意兩個(gè)向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0當(dāng)且僅當(dāng)“SKIPIF1<0”或“SKIPIF1<0且SKIPIF1<0”,按上述定義的關(guān)系“SKIPIF1<0”,給出下列四個(gè)命題:①若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;②若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0;③若SKIPIF1<0,則對(duì)于任意的SKIPIF1<0,SKIPIF1<0;④對(duì)于任意的向量SKIPIF1<0,其中SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.其中正確的命題的個(gè)數(shù)為(

)A.4 B.3 C.2 D.1【答案】B【分析】按照新定義,對(duì)每一個(gè)命題進(jìn)行判斷.【詳解】對(duì)于①,由定義可知①是正確的;對(duì)于②,中SKIPIF1<0,滿足已知SKIPIF1<0,則SKIPIF1<0,只要有一個(gè)沒(méi)有等號(hào),則一定SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,都滿足SKIPIF1<0,正確;對(duì)于③,∵SKIPIF1<0,∴命題正確,對(duì)于④,中若SKIPIF1<0,則SKIPIF1<0,但SKIPIF1<0,錯(cuò)誤,因此有①②③正確.故選:B.【方法點(diǎn)睛】新定義問(wèn)題,關(guān)鍵是正確理解新概念,并掌握解決新概念下問(wèn)題的方法,有一定的難度.本題中新概念關(guān)系“>”與向量的坐標(biāo)之間的大小關(guān)系聯(lián)系在一起,由實(shí)數(shù)大小關(guān)系的傳遞性可得新關(guān)系“>”的傳遞性,但向量的數(shù)量積與新關(guān)系“>”之間沒(méi)有必然的聯(lián)系,這可通過(guò)舉反例說(shuō)明.實(shí)際上舉反例說(shuō)明一個(gè)命題是錯(cuò)誤的,是數(shù)學(xué)中一個(gè)常用的方法.12.(2017秋·河南鄭州·高三鄭州一中階段練習(xí))若非零向量SKIPIF1<0的夾角為銳角SKIPIF1<0,且SKIPIF1<0,則稱SKIPIF1<0被SKIPIF1<0“同余”.已知SKIPIF1<0被SKIPIF1<0“同余”,則SKIPIF1<0在SKIPIF1<0上的投影是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】首先根據(jù)“同余”的定義得SKIPIF1<0,再根據(jù)投影公式,列式求解.【詳解】根據(jù)SKIPIF1<0被SKIPIF1<0“同余”,則有SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的投影為:SKIPIF1<0,故選:A.13.(2022春·陜西榆林·高一榆林市第一中學(xué)??计谥校┰O(shè)SKIPIF1<0定義一種向量積:SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在SKIPIF1<0的圖象上運(yùn)動(dòng),點(diǎn)Q在SKIPIF1<0的圖象上運(yùn)動(dòng),且滿足SKIPIF1<0(其中O為坐標(biāo)原點(diǎn)),則SKIPIF1<0的最大值A(chǔ)及最小正周期T分別為()A.2,π B.2,4πC.SKIPIF1<0,4π D.SKIPIF1<0,π【答案】C【分析】根據(jù)題意,設(shè)出Q的坐標(biāo),根據(jù)SKIPIF1<0的運(yùn)算得到P、Q坐標(biāo)間的關(guān)系,從而得到SKIPIF1<0的解析式,即可求得最大值和最小正周期.【詳解】由題意知可設(shè)SKIPIF1<0,SKIPIF1<0則根據(jù)SKIPIF1<0可得SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0而P在SKIPIF1<0的圖象上運(yùn)動(dòng),滿足SKIPIF1<0所以SKIPIF1<0,即SKIPIF1<0所以最大值為SKIPIF1<0,即A=SKIPIF1<0最小正周期為SKIPIF1<0故選:C.14.(2023·河北衡水·高三河北衡水中學(xué)??茧A段練習(xí))設(shè)向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,定義SKIPIF1<0.已知向量SKIPIF1<0為單位向量,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由平面向量數(shù)量積的運(yùn)算律求出向量SKIPIF1<0與SKIPIF1<0的夾角,代入新定義求解即可.【詳解】由題意得SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.故選:C15.(2022春·浙江金華·高一浙江金華第一中學(xué)??计谥校┯汼KIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0為平面內(nèi)的非零向量,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)向量加法減法的幾何意義和向量數(shù)量積運(yùn)算,結(jié)合排除法解題.【詳解】對(duì)于A選項(xiàng):考慮SKIPIF1<0,根據(jù)向量加法減法法則幾何意義知:SKIPIF1<0,所以A錯(cuò)誤;B選項(xiàng):根據(jù)平面向量數(shù)量積可知:不能保證SKIPIF1<0恒成立,SKIPIF1<0,所以它們的較小者一定小于等于SKIPIF1<0,所以B錯(cuò)誤D正確;C選項(xiàng):考慮SKIPIF1<0SKIPIF1<0,所以C錯(cuò)誤.故選:D【點(diǎn)睛】此題考查向量相關(guān)新定義問(wèn)題,其本質(zhì)考查向量加減法運(yùn)算的幾何意義,平面向量數(shù)量積的運(yùn)算和辨析,綜合性較強(qiáng),解題中結(jié)合排除法得選項(xiàng).16.(2021·全國(guó)·高三專題練習(xí))對(duì)于向量SKIPIF1<0,把能夠使得SKIPIF1<0取到最小值的點(diǎn)SKIPIF1<0稱為SKIPIF1<0的“平衡點(diǎn)”.如圖,矩形SKIPIF1<0的兩條對(duì)角線相交于點(diǎn)SKIPIF1<0,延長(zhǎng)SKIPIF1<0至SKIPIF1<0,使得SKIPIF1<0,聯(lián)結(jié)SKIPIF1<0,分別交SKIPIF1<0于SKIPIF1<0兩點(diǎn).下列的結(jié)論中,正確的是(

)A.SKIPIF1<0的“平衡點(diǎn)”為SKIPIF1<0.B.SKIPIF1<0的“平衡點(diǎn)”為SKIPIF1<0的中點(diǎn).C.SKIPIF1<0的“平衡點(diǎn)”存在且唯一.D.SKIPIF1<0的“平衡點(diǎn)”必為SKIPIF1<0【答案】D【分析】利用“平衡點(diǎn)”的定義、三角形中兩邊之和大于第三邊,對(duì)選項(xiàng)進(jìn)行一一驗(yàn)證.【詳解】對(duì)SKIPIF1<0,SKIPIF1<0、SKIPIF1<0的“平衡點(diǎn)”為線段上的任意一點(diǎn),故SKIPIF1<0錯(cuò)誤;對(duì)SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的“平衡點(diǎn)”為三角形內(nèi)部對(duì)3條邊的張角均為SKIPIF1<0的點(diǎn),故SKIPIF1<0錯(cuò)誤;對(duì)SKIPIF1<0,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的“平衡點(diǎn)”是線段SKIPIF1<0上的任意一點(diǎn),故SKIPIF1<0錯(cuò)誤;對(duì)SKIPIF1<0,因?yàn)榫匦蜸KIPIF1<0的兩條對(duì)角線相交于點(diǎn)SKIPIF1<0,延長(zhǎng)SKIPIF1<0至SKIPIF1<0,使得SKIPIF1<0,聯(lián)結(jié)SKIPIF1<0,分別交SKIPIF1<0、SKIPIF1<0于SKIPIF1<0、SKIPIF1<0兩點(diǎn),所以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0的“平衡點(diǎn)”必為SKIPIF1<0,故SKIPIF1<0正確.故選:SKIPIF1<0.【點(diǎn)睛】本題考查“平衡點(diǎn)”的求法,考查對(duì)新定義的理解與應(yīng)用,求解時(shí)要注意平面向量知識(shí)的合理運(yùn)用.二、多選題17.(2022春·浙江·高一期中)如圖所示,在平面上取定一點(diǎn)O和兩個(gè)以點(diǎn)O為起點(diǎn)的不共線向量SKIPIF1<0,SKIPIF1<0,稱為平面上的一個(gè)仿射坐標(biāo)系,記作SKIPIF1<0,向量SKIPIF1<0與有序數(shù)組SKIPIF1<0之間建立了一一對(duì)應(yīng)關(guān)系,有序數(shù)組SKIPIF1<0稱為SKIPIF1<0在傷射坐標(biāo)系SKIPIF1<0下的坐標(biāo),記作SKIPIF1<0.已知SKIPIF1<0,SKIPIF1<0是夾角為SKIPIF1<0的單位向量,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論中正確的有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0【答案】ABD【分析】根據(jù)向量線性運(yùn)算的坐標(biāo)表示,向量數(shù)量積的定義,運(yùn)算律及投影向量的概念,逐項(xiàng)分析即得.【詳解】由題可知SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故A正確;因?yàn)镾KIPIF1<0,SKIPIF1<0是夾角為SKIPIF1<0的單位向量,所以SKIPIF1<0,∴SKIPIF1<0,故B正確;∴SKIPIF1<0,故C錯(cuò)誤;∴SKIPIF1<0在SKIPIF1<0方向上的投影向量為SKIPIF1<0,故D正確.故選:ABD.18.(2022春·河南·高一校聯(lián)考階段練習(xí))對(duì)任意兩個(gè)非零向量SKIPIF1<0,定義新運(yùn)算:SKIPIF1<0.已知非零向量SKIPIF1<0滿足SKIPIF1<0且向量SKIPIF1<0的夾角SKIPIF1<0,若SKIPIF1<0和SKIPIF1<0都是整數(shù),則SKIPIF1<0的值可能是(

)A.2 B.SKIPIF1<0 C.3 D.4【答案】BC【分析】由題意可得SKIPIF1<0、SKIPIF1<0SKIPIF1<0,利用SKIPIF1<0的范圍,可得SKIPIF1<0從而定點(diǎn)答案.【詳解】由題意可得SKIPIF1<0,因?yàn)镾KIPIF1<0所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,因?yàn)?SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0即SKIPIF1<0.故選:BC.19.(2023·全國(guó)·高三專題練習(xí))已知向量SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0內(nèi)的一組基向量,O為SKIPIF1<0內(nèi)的定點(diǎn),對(duì)于SKIPIF1<0內(nèi)任意一點(diǎn)P,當(dāng)SKIPIF1<0時(shí),則稱有序?qū)崝?shù)對(duì)SKIPIF1<0為點(diǎn)P的廣義坐標(biāo).若點(diǎn)A,B的廣義坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,關(guān)于下列命題正確的是(

)A.線段A,B的中點(diǎn)的廣義坐標(biāo)為SKIPIF1<0B.A,B兩點(diǎn)間的距離為SKIPIF1<0C.若向量SKIPIF1<0平行于向量SKIPIF1<0,則SKIPIF1<0D.若向量SKIPIF1<0垂直于向量SKIPIF1<0,則SKIPIF1<0【答案】AC【分析】由題目給的定義結(jié)合向量的線性運(yùn)算、向量的模長(zhǎng)、向量的平行及垂直依次判斷4個(gè)選項(xiàng)即可.【詳解】根據(jù)題意得,設(shè)A,B的中點(diǎn)為SKIPIF1<0,則SKIPIF1<0,故線段A,B的中點(diǎn)的廣義坐標(biāo)為SKIPIF1<0,A正確;SKIPIF1<0,故SKIPIF1<0,當(dāng)向量SKIPIF1<0,SKIPIF1<0是相互垂直的單位向量時(shí),A,B兩點(diǎn)間的距離為SKIPIF1<0,否則距離不為SKIPIF1<0,B錯(cuò)誤;SKIPIF1<0與SKIPIF1<0平行,當(dāng)SKIPIF1<0與SKIPIF1<0存在SKIPIF1<0時(shí),結(jié)論顯然成立,當(dāng)SKIPIF1<0與SKIPIF1<0都不為SKIPIF1<0時(shí),設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故C正確;SKIPIF1<0,當(dāng)SKIPIF1<0與SKIPIF1<0為相互垂直的單位向量時(shí),SKIPIF1<0與SKIPIF1<0垂直的充要條件是SKIPIF1<0,故D不正確.故選:AC.20.(2022·江蘇南京·統(tǒng)考模擬預(yù)測(cè))設(shè)SKIPIF1<0是大于零的實(shí)數(shù),向量SKIPIF1<0,其中SKIPIF1<0,定義向量SKIPIF1<0,記SKIPIF1<0,則(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】BCD【分析】根據(jù)定義求出SKIPIF1<0和SKIPIF1<0,再根據(jù)平面向量的數(shù)量的坐標(biāo)運(yùn)算,結(jié)合恒等變換公式可求出SKIPIF1<0,由此可判斷A和B選項(xiàng);利用向量加減法的坐標(biāo)運(yùn)算、模長(zhǎng)公式以及基本不等式,可判斷C和D選項(xiàng).【詳解】因?yàn)橄蛄縎KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0是一個(gè)實(shí)數(shù),不是向量,所以A不正確,B正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取得等號(hào),所以SKIPIF1<0,故C正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),取得等號(hào),所以SKIPIF1<0,故D正確.故選:BCD21.(2022·浙江溫州·高一永嘉中學(xué)統(tǒng)考競(jìng)賽)設(shè)SKIPIF1<0、SKIPIF1<0、SKIPIF1<0是平面上任意三點(diǎn),定義向量的運(yùn)算:SKIPIF1<0,其中SKIPIF1<0由向量SKIPIF1<0以點(diǎn)SKIPIF1<0為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)直角得到(若SKIPIF1<0為零向量,規(guī)定SKIPIF1<0也是零向量).對(duì)平面向量SKIPIF1<0、SKIPIF1<0、SKIPIF1<0,下列說(shuō)法正確的是(

)A.SKIPIF1<0B.對(duì)任意SKIPIF1<0,SKIPIF1<0C.若SKIPIF1<0、SKIPIF1<0為不共線向量,滿足SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0D.SKIPIF1<0【答案】BD【分析】利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可判斷A選項(xiàng);利用A選項(xiàng)中的結(jié)論結(jié)合題中定義可判斷B選項(xiàng);利用平面向量數(shù)量積的運(yùn)算性質(zhì)可判斷C選項(xiàng);對(duì)SKIPIF1<0、SKIPIF1<0是否共線進(jìn)行分類討論,結(jié)合題中定義可判斷D選項(xiàng).【詳解】設(shè)向量SKIPIF1<0、SKIPIF1<0在平面直角坐標(biāo)系中的坐標(biāo)分別為SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,同理可得SKIPIF1<0,所以,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,A錯(cuò);對(duì)任意的SKIPIF1<0,由A選項(xiàng)可知,SKIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0不共線時(shí),SKIPIF1<0,SKIPIF1<0,B對(duì);因?yàn)镾KIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0,同理可得SKIPIF1<0,C錯(cuò);當(dāng)SKIPIF1<0、SKIPIF1<0不共線時(shí),由C選項(xiàng)可知,SKIPIF1<0,所以,SKIPIF1<0,所以,SKIPIF1<0.任取兩個(gè)向量SKIPIF1<0、SKIPIF1<0,對(duì)任意的實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0、SKIPIF1<0共線時(shí),設(shè)存在SKIPIF1<0使得SKIPIF1<0,且SKIPIF1<0,所以,SKIPIF1<0SKIPIF1<0,綜上所述,SKIPIF1<0,D對(duì).故選:BD.【點(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題考查平面向量中的新定義,解題的關(guān)鍵在于理解題中運(yùn)算的含義,結(jié)合平面向量的線性運(yùn)算與數(shù)量積運(yùn)算逐項(xiàng)判斷即可.22.(2023春·湖北武漢·高一華中師大一附中??茧A段練習(xí))對(duì)任意兩個(gè)非零的平面向量SKIPIF1<0和SKIPIF1<0,定義SKIPIF1<0,若平面向量SKIPIF1<0滿足SKIPIF1<0與SKIPIF1<0的夾角SKIPIF1<0,且SKIPIF1<0和SKIPIF1<0都在集合SKIPIF1<0中.給出以下命題,其中一定正確的是(

)A.若SKIPIF1<0時(shí),則SKIPIF1<0B.若SKIPIF1<0時(shí),則SKIPIF1<0C.若SKIPIF1<0時(shí),則SKIPIF1<0的取值個(gè)數(shù)最多為7D.若SKIPIF1<0時(shí),則SKIPIF1<0的取值個(gè)數(shù)最多為SKIPIF1<0【答案】AC【分析】由新定義可知SKIPIF1<0,再對(duì)每個(gè)命題進(jìn)行判斷,即可得出結(jié)論.【詳解】對(duì)A,若SKIPIF1<0時(shí),SKIPIF1<0,兩式相乘得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,故A正確;對(duì)B,若SKIPIF1<0時(shí),則SKIPIF1<0,同理SKIPIF1<0,相乘得到SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0取值SKIPIF1<0時(shí)符合SKIPIF1<0,此時(shí)SKIPIF1<0,故B錯(cuò)誤;對(duì)C,若SKIPIF1<0時(shí),則SKIPIF1<0,同理SKIPIF1<0,相乘得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的取值個(gè)數(shù)最多為7個(gè),故C正確;對(duì)D,若SKIPIF1<0時(shí),由上面推導(dǎo)方法可知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的取值個(gè)數(shù)最多為SKIPIF1<0,故D錯(cuò)誤.故選:AC.【點(diǎn)睛】數(shù)學(xué)中的新定義題目解題策略:①仔細(xì)閱讀,理解新定義的內(nèi)涵;②根據(jù)新定義,對(duì)對(duì)應(yīng)知識(shí)進(jìn)行再遷移.23.(2023·全國(guó)·高三專題練習(xí))定義平面向量的一種運(yùn)算“SKIPIF1<0”如下:對(duì)任意的兩個(gè)向量SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,下面說(shuō)法一定正確的是(

)A.對(duì)任意的SKIPIF1<0,有SKIPIF1<0B.存在唯一確定的向量SKIPIF1<0使得對(duì)于任意向量SKIPIF1<0,都有SKIPIF1<0成立C.若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0與SKIPIF1<0共線D.若SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0與SKIPIF1<0的模相等【答案】AD【分析】由SKIPIF1<0表示出SKIPIF1<0和SKIPIF1<0,即可判斷A;假設(shè)存在唯一確定的向量SKIPIF1<0使得對(duì)于任意向量SKIPIF1<0,都有SKIPIF1<0成立,即方程組SKIPIF1<0,對(duì)任意SKIPIF1<0恒成立,解方程可判斷B;若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0,設(shè)SKIPIF1<0,分別表示出SKIPIF1<0與SKIPIF1<0即可判斷C;若SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0,設(shè)SKIPIF1<0,分別表示出SKIPIF1<0與SKIPIF1<0即可判斷D.【詳解】設(shè)向量SKIPIF1<0,SKIPIF1<0,對(duì)于A,對(duì)任意的SKIPIF1<0,有SKIPIF1<0SKIPIF1<0SKIPIF1<0,故A正確;對(duì)于B,假設(shè)存在唯一確定的向量SKIPIF1<0使得對(duì)于任意向量SKIPIF1<0,都有SKIPIF1<0成立,即SKIPIF1<0恒成立,即方程組SKIPIF1<0,對(duì)任意SKIPIF1<0恒成立,而此方程組無(wú)解,故B不正確;對(duì)于C,若SKIPIF1<0與SKIPIF1<0垂直,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,故C不正確;對(duì)于D,若SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的模相等,故D正確.故選:AD.【點(diǎn)睛】本題在平面向量的基礎(chǔ)上,加以創(chuàng)新,屬于創(chuàng)新題,考查平面向量的基礎(chǔ)知識(shí)以及分析問(wèn)題、解決問(wèn)題的能力.三、填空題24.(2023春·江蘇泰州·高一靖江高級(jí)中學(xué)校考階段練習(xí))設(shè)向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,定義SKIPIF1<0與SKIPIF1<0的“向量積”,SKIPIF1<0是一個(gè)向量,它的模等于SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】2【分析】分別計(jì)算兩個(gè)向量的模長(zhǎng)及夾角,代入計(jì)算即可.【詳解】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,故答案為:225.(2018春·安徽蕪湖·高一蕪湖一中校考階段練習(xí))在平面斜坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,平面上任一點(diǎn)SKIPIF1<0關(guān)于斜坐標(biāo)系的斜坐標(biāo)是這樣定義的:若SKIPIF1<0(其中SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0軸方向相同的單位向量),則SKIPIF1<0的坐標(biāo)為SKIPIF1<0,若SKIPIF1<0關(guān)于斜坐標(biāo)系SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0______【答案】SKIPIF1<0【分析】由斜坐標(biāo)定義用SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0,然后平方轉(zhuǎn)化為數(shù)量積求得模.【詳解】由題意SKIPIF1<0,SKIPIF1<0,故答案為:SKIPIF1<0.26.(2019春·安徽蕪湖·高一校聯(lián)考期中)定義SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,則與SKIPIF1<0方向相反的單位向量的坐標(biāo)為_(kāi)_____________.【答案】SKIPIF1<0【分析】先求得SKIPIF1<0,然后求得與SKIPIF1<0方向相反的單位向量的坐標(biāo).【詳解】SKIPIF1<0,所以與SKIPIF1<0方向相反的單位向量的坐標(biāo)為SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<027.(2022秋·湖南長(zhǎng)沙·高三??茧A段練習(xí))已知對(duì)任意平面向量SKIPIF1<0,把SKIPIF1<0繞其起點(diǎn)沿逆時(shí)針?lè)较蛐D(zhuǎn)SKIPIF1<0角得到向量SKIPIF1<0.如圖所示,頂角SKIPIF1<0的等腰三角形PQR的頂點(diǎn)P、Q的坐標(biāo)分別為SKIPIF1<0、SKIPIF1<0,則頂點(diǎn)R的坐標(biāo)為_(kāi)_____.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,表示出SKIPIF1<0,根據(jù)已知列出式子即可求出.【詳解】設(shè)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論