版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題08數(shù)列專題(新定義)一、單選題1.(2023春·甘肅張掖·高二高臺(tái)縣第一中學(xué)??茧A段練習(xí))對(duì)于正項(xiàng)數(shù)列SKIPIF1<0中,定義:SKIPIF1<0為數(shù)列SKIPIF1<0的“勻稱值”已知數(shù)列SKIPIF1<0的“勻稱值”為SKIPIF1<0,則該數(shù)列中的SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】確定SKIPIF1<0,取SKIPIF1<0和SKIPIF1<0帶入式子,相減得到答案.【詳解】SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0;SKIPIF1<0;兩式相減得SKIPIF1<0,所以SKIPIF1<0.故選:D2.(2023春·浙江·高三開學(xué)考試)對(duì)任意正整數(shù)對(duì)SKIPIF1<0,定義函數(shù)SKIPIF1<0如下:SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)新定義得SKIPIF1<0,令SKIPIF1<0即可判斷A,根據(jù)SKIPIF1<0累乘可判斷B,利用二項(xiàng)式定理求得SKIPIF1<0,結(jié)合SKIPIF1<0判斷C,SKIPIF1<0,結(jié)合等比數(shù)列的前SKIPIF1<0項(xiàng)和公式判斷D.【詳解】SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,A錯(cuò)誤;SKIPIF1<0,SKIPIF1<0累乘得:SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則B錯(cuò)誤;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則C正確;SKIPIF1<0,則D錯(cuò)誤.故選:C.3.(2023春·安徽·高二合肥市第八中學(xué)校聯(lián)考開學(xué)考試)定義:對(duì)于數(shù)列SKIPIF1<0,如果存在一個(gè)常數(shù)SKIPIF1<0,使得對(duì)任意的正整數(shù)SKIPIF1<0恒有SKIPIF1<0,則稱數(shù)列SKIPIF1<0是從第SKIPIF1<0項(xiàng)起的周期為T的周期數(shù)列.已知周期數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0(SKIPIF1<0),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.1【答案】D【分析】寫出周期數(shù)列SKIPIF1<0的前幾項(xiàng),發(fā)現(xiàn)周期為6,進(jìn)而求得SKIPIF1<0的值.【詳解】寫出周期數(shù)列SKIPIF1<0的前幾項(xiàng):1,3,2,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,1,3,2,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,1,…,發(fā)現(xiàn)周期數(shù)列SKIPIF1<0是周期為6的周期數(shù)列,∴SKIPIF1<0.故選:D.4.(2023秋·福建南平·高二統(tǒng)考期末)若數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,SKIPIF1<0,則稱數(shù)列SKIPIF1<0是數(shù)列SKIPIF1<0的“均值數(shù)列”.已知數(shù)列SKIPIF1<0是數(shù)列SKIPIF1<0的“均值數(shù)列”且SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0對(duì)SKIPIF1<0恒成立,則實(shí)數(shù)m的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】由新定義求得SKIPIF1<0,然后由SKIPIF1<0求得SKIPIF1<0,從而可求得SKIPIF1<0(裂項(xiàng)相消法)后得SKIPIF1<0的最小值,解相應(yīng)不等式可得結(jié)論.【詳解】由題意SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0是遞增數(shù)列,∴SKIPIF1<0的最小值是SKIPIF1<0(SKIPIF1<0時(shí)取得),由題意SKIPIF1<0,解得SKIPIF1<0.故選:B.5.(2023秋·山西長治·高三校聯(lián)考階段練習(xí))對(duì)于一個(gè)SKIPIF1<0項(xiàng)數(shù)列SKIPIF1<0,記SKIPIF1<0的“Cesaro平均值”為SKIPIF1<0,若數(shù)列SKIPIF1<0的“Cesaro平均值”為2022,數(shù)列SKIPIF1<0的“Cesaro平均值”為2046,則SKIPIF1<0(
)A.24 B.26 C.1036 D.1541【答案】B【分析】先求出SKIPIF1<0的值,再根據(jù)Cesaro平均值的求法列出等式,即可求出SKIPIF1<0的值.【詳解】因?yàn)閿?shù)列SKIPIF1<0的“Cesaro平均值”為SKIPIF1<0,所以SKIPIF1<0.因?yàn)镾KIPIF1<0的“Cesaro平均值”為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,故選:B.6.(2023春·湖北咸寧·高二校考開學(xué)考試)等比數(shù)列SKIPIF1<0中SKIPIF1<0,公比SKIPIF1<0,用SKIPIF1<0表示它的前SKIPIF1<0項(xiàng)之積,則SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0中最大的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)題意分析SKIPIF1<0的符號(hào),結(jié)合前SKIPIF1<0項(xiàng)之積的性質(zhì)運(yùn)算求解.【詳解】∵SKIPIF1<0,則當(dāng)SKIPIF1<0為奇數(shù)時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),SKIPIF1<0,∴當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,由題意可得:SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,若SKIPIF1<0取到最大,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0中最大的是SKIPIF1<0.故選:C.7.(2022秋·北京·高二北京二中??计谀┤绻麛?shù)列SKIPIF1<0滿足SKIPIF1<0(k為常數(shù)),那么數(shù)列SKIPIF1<0叫做等比差數(shù)列,k叫做公比差.下列四個(gè)結(jié)論中所有正確結(jié)論的序號(hào)是(
)①若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則該數(shù)列是等比差數(shù)列;②數(shù)列SKIPIF1<0是等比差數(shù)列;③所有的等比數(shù)列都是等比差數(shù)列;④存在等差數(shù)列是等比差數(shù)列.A.①②③ B.①③④ C.①②④ D.②③④【答案】B【分析】根據(jù)比等差數(shù)列的定義SKIPIF1<0(SKIPIF1<0為常數(shù)),逐一判斷①②③④是否是等比差數(shù)列即可可得到答案.【詳解】①數(shù)列SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,滿足等比差數(shù)列的定義,故①正確;②數(shù)列SKIPIF1<0,SKIPIF1<0SKIPIF1<0,不滿足等比差數(shù)列的定義,故②錯(cuò)誤;③設(shè)等比數(shù)列的公比為SKIPIF1<0,則SKIPIF1<0,滿足等比差數(shù)列,故③正確;④設(shè)等差數(shù)列的公差為SKIPIF1<0,則SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),滿足SKIPIF1<0,故存在等差數(shù)列是等比差數(shù)列,即④正確;故答案為:①③④故選:B.8.(2019秋·北京·高三101中學(xué)??茧A段練習(xí))定義在SKIPIF1<0上的函數(shù)SKIPIF1<0,如果對(duì)于任意給定的等比數(shù)列SKIPIF1<0,SKIPIF1<0仍是等比數(shù)列,則稱SKIPIF1<0為“保等比數(shù)列函數(shù)”.現(xiàn)有定義在SKIPIF1<0上的如下函數(shù):①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0,其中是“保等比數(shù)列函數(shù)”的序號(hào)為(
)A.①② B.③④ C.①③ D.②④【答案】C【分析】根據(jù)新定義,結(jié)合等比數(shù)列性質(zhì)SKIPIF1<0,一一加以判斷,即可得到結(jié)論.通過積的乘方,即可判斷①;通過指數(shù)的冪的運(yùn)算,即可判斷②;通過積的運(yùn)算即可判斷③;由對(duì)數(shù)的運(yùn)算法則,即可判斷④.【詳解】設(shè)SKIPIF1<0是等比數(shù)列,由等比數(shù)列性質(zhì)知SKIPIF1<0,對(duì)于①,SKIPIF1<0,即SKIPIF1<0仍是等比數(shù)列,故正確;對(duì)于②,SKIPIF1<0,即SKIPIF1<0不是等比數(shù)列,故不正確;對(duì)于③,SKIPIF1<0,即SKIPIF1<0是等比數(shù)列,故正確;對(duì)于④,SKIPIF1<0,即SKIPIF1<0不是等比數(shù)列,故不正確;故選:C.9.(2023秋·吉林·高二吉林一中??计谀┤魯?shù)列SKIPIF1<0滿足SKIPIF1<0,則稱SKIPIF1<0為“必會(huì)數(shù)列”,已知正項(xiàng)數(shù)列SKIPIF1<0為“必會(huì)數(shù)列”,若SKIPIF1<0,則SKIPIF1<0(
).A.SKIPIF1<0 B.1 C.6 D.12【答案】D【分析】根據(jù)數(shù)列新定義可得數(shù)列SKIPIF1<0是以SKIPIF1<0為公比的等比數(shù)列,利用等比數(shù)列通項(xiàng)公式,即可求得答案.【詳解】由題意數(shù)列SKIPIF1<0滿足SKIPIF1<0,可得SKIPIF1<0,故正項(xiàng)數(shù)列SKIPIF1<0是以SKIPIF1<0為公比的等比數(shù)列,則SKIPIF1<0,故選:D10.(2022秋·陜西渭南·高二統(tǒng)考期末)設(shè)SKIPIF1<0是無窮數(shù)列,若存在正整數(shù)SKIPIF1<0,使得對(duì)任意的SKIPIF1<0,均有SKIPIF1<0,則稱SKIPIF1<0是間隔遞增數(shù)列,SKIPIF1<0是SKIPIF1<0的間隔數(shù).若SKIPIF1<0是間隔遞增數(shù)列,則數(shù)列SKIPIF1<0的通項(xiàng)不可能是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)間隔遞增數(shù)列的定義求解即可.【詳解】對(duì)于A:SKIPIF1<0,化簡(jiǎn)得:SKIPIF1<0,存在正整數(shù)SKIPIF1<0,使得對(duì)任意的SKIPIF1<0,SKIPIF1<0恒成立,所以SKIPIF1<0是間隔遞增數(shù)列;對(duì)于B:SKIPIF1<0,因?yàn)镾KIPIF1<0為正整數(shù)且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是間隔遞增數(shù)列;對(duì)于C:SKIPIF1<0,因?yàn)镾KIPIF1<0為正整數(shù)且SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是間隔遞增數(shù)列;對(duì)于D:SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0正奇數(shù),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的正負(fù)由SKIPIF1<0的奇偶性決定,此時(shí)SKIPIF1<0不恒成立,不符合間隔遞增數(shù)列的定義;當(dāng)SKIPIF1<0正偶數(shù),SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0的正負(fù)由SKIPIF1<0的奇偶性決定,此時(shí)SKIPIF1<0不恒成立,不符合間隔遞增數(shù)列的定義;故選:D.11.(2023·全國·高三專題練習(xí))對(duì)于數(shù)列SKIPIF1<0,若存在正整數(shù)SKIPIF1<0,使得SKIPIF1<0,SKIPIF1<0,則稱SKIPIF1<0是數(shù)列SKIPIF1<0的“谷值”,k是數(shù)列SKIPIF1<0的“谷值點(diǎn)”.在數(shù)列SKIPIF1<0中,若SKIPIF1<0,則數(shù)列SKIPIF1<0的“谷值點(diǎn)”為(
)A.2 B.7 C.2,7 D.2,5,7【答案】C【分析】先求出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,再得到SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,結(jié)合數(shù)列的單調(diào)性以及谷值點(diǎn)的定義即可得求解.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)楹瘮?shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0時(shí),數(shù)列SKIPIF1<0為單調(diào)遞增數(shù)列,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以數(shù)列SKIPIF1<0的“谷值點(diǎn)”為SKIPIF1<0,SKIPIF1<0.故選:C.12.(2023·全國·高二專題練習(xí))若數(shù)列SKIPIF1<0滿足SKIPIF1<0,則稱SKIPIF1<0為“對(duì)奇數(shù)列”.已知正項(xiàng)數(shù)列SKIPIF1<0為“對(duì)奇數(shù)列”,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意可得SKIPIF1<0,進(jìn)而可得SKIPIF1<0為等比數(shù)列,再求得通項(xiàng)公式即可.【詳解】由題意得SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0是首項(xiàng)為2,公比為2的等比數(shù)列,所以SKIPIF1<0.故選:D.13.(2022春·遼寧葫蘆島·高二校聯(lián)考階段練習(xí))設(shè)SKIPIF1<0表示落在區(qū)間SKIPIF1<0內(nèi)的偶數(shù)個(gè)數(shù).在等比數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.21 B.20 C.41 D.40【答案】C【分析】設(shè)SKIPIF1<0的公比為q,根據(jù)SKIPIF1<0和SKIPIF1<0求出SKIPIF1<0,從而得SKIPIF1<0和SKIPIF1<0,再根據(jù)SKIPIF1<0的定義可求出結(jié)果.【詳解】設(shè)SKIPIF1<0的公比為q,則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.所以落在區(qū)間SKIPIF1<0內(nèi)的偶數(shù)共有41個(gè),故SKIPIF1<0.故選:C14.(2023春·湖北·高三黃岡中學(xué)校聯(lián)考開學(xué)考試)對(duì)于數(shù)列SKIPIF1<0,定義SKIPIF1<0為數(shù)列SKIPIF1<0的“加權(quán)和”,已知某數(shù)列SKIPIF1<0的“加權(quán)和”SKIPIF1<0,記數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,則實(shí)數(shù)p的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系求出SKIPIF1<0,再根據(jù)等差數(shù)列的求和公式求出SKIPIF1<0,將SKIPIF1<0化為SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,分類討論SKIPIF1<0可求出結(jié)果.【詳解】由SKIPIF1<0,∴SKIPIF1<0時(shí),SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0也成立,∴SKIPIF1<0,∴數(shù)列SKIPIF1<0的前n項(xiàng)和為:SKIPIF1<0SKIPIF1<0,∵SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,∴SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,因?yàn)镾KIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0恒成立,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,因?yàn)镾KIPIF1<0,∴SKIPIF1<0,所以SKIPIF1<0,綜上可得:實(shí)數(shù)p的取值范圍為SKIPIF1<0.故選:A.15.(2023·全國·高三專題練習(xí))若數(shù)列SKIPIF1<0滿足:若SKIPIF1<0,則SKIPIF1<0,則稱數(shù)列SKIPIF1<0為“等同數(shù)列”.已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,若“等同數(shù)列”SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.4711 B.4712 C.4714 D.4718【答案】D【分析】先對(duì)已知關(guān)系式變形,求出數(shù)列SKIPIF1<0的通項(xiàng)公式,再利用“等同數(shù)列”的定義與已知條件得SKIPIF1<0是周期數(shù)列,即可得SKIPIF1<0.【詳解】由SKIPIF1<0得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,同理得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,故數(shù)列SKIPIF1<0是以3為周期的數(shù)列,所以SKIPIF1<0,故選:D.16.(2022·全國·高三專題練習(xí))設(shè)數(shù)列SKIPIF1<0,若存在常數(shù)SKIPIF1<0,對(duì)任意小的正數(shù)SKIPIF1<0,總存在正整數(shù)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則數(shù)列SKIPIF1<0為收斂數(shù)列.下列關(guān)于收斂數(shù)列說法正確的是(
)A.若等比數(shù)列SKIPIF1<0是收斂數(shù)列,則公比SKIPIF1<0B.等差數(shù)列不可能是收斂數(shù)列C.設(shè)公差不為0的等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則數(shù)列SKIPIF1<0一定是收斂數(shù)列D.設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,滿足SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0是收斂數(shù)列【答案】C【分析】根據(jù)題中定義,結(jié)合特殊的等差數(shù)列和等比數(shù)列、數(shù)列的周期性、等差數(shù)列前SKIPIF1<0項(xiàng)和公式逐一判斷即可.【詳解】當(dāng)數(shù)列為常數(shù)列(不為零),因此該數(shù)列是等差數(shù)列又是等比數(shù)列,顯然該數(shù)列是收斂數(shù)列,因此選項(xiàng)AB不正確;選項(xiàng)C:設(shè)等差數(shù)列SKIPIF1<0的公差為SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以數(shù)列SKIPIF1<0一定是收斂數(shù)列,因此本選項(xiàng)正確;選項(xiàng)D:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以可得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0,兩式相減,得SKIPIF1<0,所以SKIPIF1<0,所以該數(shù)列的周期為SKIPIF1<0,該數(shù)列不可能是收斂數(shù)列,因此本選項(xiàng)說法不正確,故選:C【點(diǎn)睛】關(guān)鍵點(diǎn)睛:利用數(shù)列的周期性、常數(shù)列的性質(zhì)是解題的關(guān)鍵.17.(2022春·安徽亳州·高三蒙城縣第六中學(xué)校聯(lián)考開學(xué)考試)設(shè)數(shù)列SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,若存在公比為q的等比數(shù)列SKIPIF1<0:SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,使得SKIPIF1<0,其中SKIPIF1<0,2,…,m,則稱數(shù)列SKIPIF1<0為數(shù)列SKIPIF1<0的“等比分割數(shù)列”.若數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,其“等比分割數(shù)列”SKIPIF1<0的首項(xiàng)為1,則數(shù)列SKIPIF1<0的公比q的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】由題意可得,SKIPIF1<0,從而可得SKIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,再根據(jù)指數(shù)函數(shù)的單調(diào)性求出SKIPIF1<0的最小值即可【詳解】由題意可得,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0成立;當(dāng)SKIPIF1<0,3,…,10時(shí),應(yīng)有SKIPIF1<0成立,因?yàn)镾KIPIF1<0在R上單調(diào)遞增,所以SKIPIF1<0隨著n的增大而減小,故SKIPIF1<0,綜上,q的取值范圍是SKIPIF1<0.故選:C.18.(2022春·江蘇無錫·高二江蘇省江陰市第一中學(xué)??奸_學(xué)考試)若數(shù)列{an}滿足SKIPIF1<0……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項(xiàng)和Sn滿足SKIPIF1<0,則實(shí)數(shù)t的取值范圍是()A.SKIPIF1<0 B.(-∞,1)C.SKIPIF1<0 D.(1,+∞)【答案】A【分析】根據(jù)SKIPIF1<0,利用遞推公式求得數(shù)列SKIPIF1<0的通項(xiàng)公式.再根據(jù)新定義的意義,代入解不等式即可求得實(shí)數(shù)SKIPIF1<0的取值范圍.【詳解】因?yàn)镾KIPIF1<0所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0兩式相減可得SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以公比SKIPIF1<0的等比數(shù)列當(dāng)SKIPIF1<0時(shí),SKIPIF1<0所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0由“差半遞增”數(shù)列的定義可知SKIPIF1<0化簡(jiǎn)可得SKIPIF1<0解不等式可得SKIPIF1<0即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0故選:A.19.(2022·浙江·高二學(xué)業(yè)考試)通過以下操作得到一系列數(shù)列:第1次,在2,3之間插入2與3的積6,得到數(shù)列2,6,3;第2次,在2,6,3每?jī)蓚€(gè)相鄰數(shù)之間插入它們的積,得到數(shù)列2,12,6,18,3;類似地,第3次操作后,得到數(shù)列:2,24,12,72,6,108,18,54,3.按上述這樣操作11次后,得到的數(shù)列記為SKIPIF1<0,則SKIPIF1<0的值是(
)A.6 B.12 C.18 D.108【答案】A【分析】設(shè)數(shù)列經(jīng)過第SKIPIF1<0次拓展后的項(xiàng)數(shù)為SKIPIF1<0,因?yàn)閿?shù)列每一次拓展是在原數(shù)列的相鄰兩項(xiàng)中增加一項(xiàng),則經(jīng)過第SKIPIF1<0次拓展后增加的項(xiàng)數(shù)為SKIPIF1<0,從而可得SKIPIF1<0,從而可求出SKIPIF1<0,從而可知經(jīng)過11次拓展后在SKIPIF1<0與6之間增加的數(shù)為SKIPIF1<0,由此可得出經(jīng)過11次拓展后6所在的位置,即可得出答案.【詳解】解:設(shè)數(shù)列經(jīng)過第SKIPIF1<0次拓展后的項(xiàng)數(shù)為SKIPIF1<0,因?yàn)閿?shù)列每一次拓展是在原數(shù)列的相鄰兩項(xiàng)中增加一項(xiàng),則經(jīng)過第SKIPIF1<0次拓展后增加的項(xiàng)數(shù)為SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng),2為公比的等比數(shù)列,是以SKIPIF1<0,所以SKIPIF1<0,則經(jīng)過11次拓展后在SKIPIF1<0與6之間增加的數(shù)為SKIPIF1<0,所以經(jīng)過11次拓展后6所在的位置為第SKIPIF1<0,所以SKIPIF1<0.故選:A.二、多選題20.(2022秋·安徽阜陽·高三安徽省臨泉第一中學(xué)校聯(lián)考階段練習(xí))若數(shù)列SKIPIF1<0滿足:對(duì)任意正整數(shù)SKIPIF1<0為遞減數(shù)列,則稱數(shù)列SKIPIF1<0為“差遞減數(shù)列”.給出下列數(shù)列SKIPIF1<0,其中是“差遞減數(shù)列”的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【分析】利用差遞減數(shù)列的定義及函數(shù)的單調(diào)性即可求解.【詳解】對(duì)A,若SKIPIF1<0,則SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0為遞增數(shù)列,故SKIPIF1<0錯(cuò)誤;對(duì)B,若SKIPIF1<0,則SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,所以SKIPIF1<0為遞增數(shù)列,故B錯(cuò)誤;對(duì)C,若SKIPIF1<0,則SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0為遞減數(shù)列,故C正確;對(duì)D,若SKIPIF1<0,則SKIPIF1<0,由函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0為遞減數(shù)列,故D正確.故選:CD.21.(2023春·江西新余·高二新余市第一中學(xué)??茧A段練習(xí))若數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,使得對(duì)于SKIPIF1<0,都有SKIPIF1<0,則稱SKIPIF1<0具有“三項(xiàng)相關(guān)性”,下列說法正確的有(
).A.若數(shù)列SKIPIF1<0是等差數(shù)列,則SKIPIF1<0具有“三項(xiàng)相關(guān)性”B.若數(shù)列SKIPIF1<0是等比數(shù)列,則SKIPIF1<0具有“三項(xiàng)相關(guān)性”C.若數(shù)列SKIPIF1<0是周期數(shù)列,則SKIPIF1<0具有“三項(xiàng)相關(guān)性”D.若數(shù)列SKIPIF1<0具有正項(xiàng)“三項(xiàng)相關(guān)性”,且正數(shù)SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,數(shù)列SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的前SKIPIF1<0項(xiàng)和分別為SKIPIF1<0,SKIPIF1<0,則對(duì)SKIPIF1<0,SKIPIF1<0恒成立【答案】ABD【分析】根據(jù)題目給出的“三項(xiàng)相關(guān)性”的定義,逐項(xiàng)驗(yàn)證即可.【詳解】若SKIPIF1<0為等差數(shù)列,則有SKIPIF1<0,SKIPIF1<0,A正確;若數(shù)列SKIPIF1<0是等比數(shù)列,則SKIPIF1<0,SKIPIF1<0,(SKIPIF1<0),即SKIPIF1<0,易知SKIPIF1<0,顯然成立,SKIPIF1<0時(shí),SKIPIF1<0,取SKIPIF1<0,有SKIPIF1<0,也成立,所以B正確;對(duì)周期數(shù)列:0,0,1,0,0,1,SKIPIF1<0,所以SKIPIF1<0時(shí),SKIPIF1<0,顯然不成立,所以C錯(cuò)誤;對(duì)D,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0,易知SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,D正確;故選:ABD22.(2023春·廣東惠州·高三??茧A段練習(xí))斐波那契數(shù)列又稱黃金分割數(shù)列,因數(shù)學(xué)家列昂納多·斐波那契以兔子繁殖為例子而引入,故又稱為“兔子數(shù)列”.斐波那契數(shù)列用遞推的方式可如下定義:用SKIPIF1<0表示斐波那契數(shù)列的第n項(xiàng),則數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,記SKIPIF1<0,則下列結(jié)論正確的是(
)A.?dāng)?shù)列SKIPIF1<0是遞增數(shù)列 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】由數(shù)列的遞推公式可判斷A,B;利用累加法計(jì)算可判斷選項(xiàng)C,D.【詳解】對(duì)A,由SKIPIF1<0知,SKIPIF1<0的前10項(xiàng)依次為:1,1,2,3,5,8,13,21,34,55,其中,第一二項(xiàng)相等,不滿足遞增性,故A錯(cuò)誤;對(duì)B,根據(jù)遞推公式SKIPIF1<0,得SKIPIF1<0,故B正確;對(duì)C,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,……,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故C正確;對(duì)D,由遞推式,得SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,累加得SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故D正確;故選:BCD.23.(2023秋·河北邯鄲·高二統(tǒng)考期末)若SKIPIF1<0不是等比數(shù)列,但SKIPIF1<0中存在互不相同的三項(xiàng)可以構(gòu)成等比數(shù)列,則稱SKIPIF1<0是局部等比數(shù)列.下列數(shù)列中是局部等比數(shù)列的是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】對(duì)于ABD,直接取特定項(xiàng)驗(yàn)證即可;對(duì)于C,定義法可證為等比數(shù)列后即可判斷.【詳解】對(duì)于A:若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,因?yàn)镾KIPIF1<0不是等比數(shù)列,所以SKIPIF1<0是局部等比數(shù)列.故A正確;對(duì)于B:若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,因?yàn)镾KIPIF1<0不是等比數(shù)列,所以SKIPIF1<0是局部等比數(shù)列.故B正確;對(duì)于C:若SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0是等比數(shù)列,所以SKIPIF1<0不是局部等比數(shù)列.故C錯(cuò)誤;對(duì)于D:若SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0成等比數(shù)列,因?yàn)镾KIPIF1<0不是等比數(shù)列,所以SKIPIF1<0是局部等比數(shù)列.故D正確.故選:ABD.24.(2023春·安徽蚌埠·高二蚌埠二中??茧A段練習(xí))已知數(shù)列SKIPIF1<0是各項(xiàng)均為正數(shù)且公比不等于1的等比數(shù)列SKIPIF1<0,對(duì)于函數(shù)SKIPIF1<0,若數(shù)列SKIPIF1<0為等差數(shù)列,則稱函數(shù)SKIPIF1<0為“保比差數(shù)列函數(shù)”,則定義在SKIPIF1<0上的如下函數(shù)中是“保比差數(shù)列函數(shù)”的有(
)A.SKIPIF1<0為“保比差數(shù)列函數(shù)” B.SKIPIF1<0為“保比差數(shù)列函數(shù)”C.SKIPIF1<0為“保比差數(shù)列函數(shù)” D.SKIPIF1<0為“保比差數(shù)列函數(shù)”【答案】ABD【分析】設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,利用保比差數(shù)列函數(shù)的定義,結(jié)合等差數(shù)列的定義逐項(xiàng)驗(yàn)證即可.【詳解】設(shè)數(shù)列SKIPIF1<0的公比為SKIPIF1<0,選項(xiàng)A:SKIPIF1<0,所以SKIPIF1<0是常數(shù),所以數(shù)列SKIPIF1<0為等差數(shù)列,A滿足題意;選項(xiàng)B:SKIPIF1<0,所以SKIPIF1<0是常數(shù),所以數(shù)列SKIPIF1<0為等差數(shù)列,B滿足題意;選項(xiàng)C:SKIPIF1<0,所以SKIPIF1<0不是常數(shù),所以數(shù)列SKIPIF1<0不為等差數(shù)列,C不滿足題意;選項(xiàng)D:SKIPIF1<0,所以SKIPIF1<0是常數(shù),所以數(shù)列SKIPIF1<0為等差數(shù)列,D滿足題意;故選:ABD25.(2022秋·福建福州·高二校聯(lián)考期末)在數(shù)列SKIPIF1<0中,若SKIPIF1<0為常數(shù)),則稱SKIPIF1<0為“平方等差數(shù)列”.下列對(duì)“平方等差數(shù)列”的判斷,其中正確的為(
)A.SKIPIF1<0是平方等差數(shù)列B.若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0是等差數(shù)列C.若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù))也是平方等差數(shù)列D.若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù))也是平方等差數(shù)列【答案】BD【分析】根據(jù)等差數(shù)列的定義,結(jié)合平方等差數(shù)列的定義逐一判斷即可.【詳解】對(duì)于A,當(dāng)SKIPIF1<0為奇數(shù)時(shí),則SKIPIF1<0為偶數(shù),所以SKIPIF1<0,當(dāng)SKIPIF1<0為偶數(shù)時(shí),則SKIPIF1<0為奇數(shù),所以SKIPIF1<0,即SKIPIF1<0不符合平方等差數(shù)列的定義,故錯(cuò)誤;對(duì)于B,若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù)),即SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,故正確;對(duì)于C,若SKIPIF1<0是平方等差數(shù)列,則SKIPIF1<0為常數(shù)),則SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0為等差數(shù)列時(shí),SKIPIF1<0,則SKIPIF1<0為平方等差數(shù)列,當(dāng)SKIPIF1<0不為等差數(shù)列時(shí),則SKIPIF1<0不為平方等差數(shù)列,故錯(cuò)誤;對(duì)于D,因?yàn)镾KIPIF1<0是平方等差數(shù)列,所以SKIPIF1<0,把以上的等式相加,得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,即數(shù)列SKIPIF1<0是平方等差數(shù)列,故正確;故選:BD26.(2023秋·山西呂梁·高二統(tǒng)考期末)定義:在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的積,形成新的數(shù)列,這樣的操作叫作該數(shù)列的一次“美好成長”.將數(shù)列1,4進(jìn)行“美好成長”,第一次得到數(shù)列1,4,4;第二次得到數(shù)列1,4,4,16,4,SKIPIF1<0,設(shè)第n次“美好成長”后得到的數(shù)列為SKIPIF1<0,并記SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.?dāng)?shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0【答案】ABD【分析】對(duì)A:由題意直接運(yùn)算判斷;對(duì)B:根據(jù)第SKIPIF1<0次“美好成長”與第n次“美好成長”的關(guān)系分析運(yùn)算;對(duì)C:根據(jù)題意分析可得:SKIPIF1<0,利用構(gòu)造法結(jié)合等比數(shù)列分析運(yùn)算;對(duì)D:由SKIPIF1<0,利用構(gòu)造法結(jié)合等比數(shù)列可得SKIPIF1<0,利用裂項(xiàng)相消結(jié)合分組求和運(yùn)算求解.【詳解】對(duì)A:SKIPIF1<0,A正確;對(duì)B:由題意可知:SKIPIF1<0SKIPIF1<0,故SKIPIF1<0,B正確;對(duì)C:設(shè)第n次“美好成長”后共插入SKIPIF1<0項(xiàng),即SKIPIF1<0,共有SKIPIF1<0個(gè)間隔,且SKIPIF1<0,則第SKIPIF1<0次“美好成長”后再插入SKIPIF1<0項(xiàng),則SKIPIF1<0,可得SKIPIF1<0,且SKIPIF1<0,故數(shù)列SKIPIF1<0是以首項(xiàng)為2,公比為2的等比數(shù)列,則SKIPIF1<0,故SKIPIF1<0,C錯(cuò)誤;對(duì)D:∵SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,故數(shù)列SKIPIF1<0是以首項(xiàng)為SKIPIF1<0,公比為3的等比數(shù)列,則SKIPIF1<0,即SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0,設(shè)數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,即數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,D正確.故選:ABD.【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)構(gòu)造法:SKIPIF1<0;(2)裂項(xiàng)構(gòu)造:SKIPIF1<0.27.(2023春·安徽·高二合肥市第八中學(xué)校聯(lián)考開學(xué)考試)在數(shù)學(xué)課堂上,教師引導(dǎo)學(xué)生構(gòu)造新數(shù)列:在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的和,形成新的數(shù)列,再把所得數(shù)列按照同樣的方法不斷構(gòu)造出新的數(shù)列,將數(shù)列1,2進(jìn)行構(gòu)造,第1次得到數(shù)列1,3,2;第2次得到數(shù)列1,4,3,5,2;…;第SKIPIF1<0次得到數(shù)列1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,…,SKIPIF1<0,2.記SKIPIF1<0,數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)數(shù)列的構(gòu)造方法先寫出前面幾次數(shù)列的結(jié)果,尋找規(guī)律,再進(jìn)行推理運(yùn)算即可.【詳解】解:由題意可知,第1次得到數(shù)列1,3,2,此時(shí)SKIPIF1<0,第2次得到數(shù)列1,4,3,5,2,此時(shí)SKIPIF1<0,第3次得到數(shù)列1,5,4,7,3,8,5,7,2,此時(shí)SKIPIF1<0,第4次得到數(shù)列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此時(shí)SKIPIF1<0,第SKIPIF1<0次得到數(shù)列1,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,2,此時(shí)SKIPIF1<0,由此可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故A正確;SKIPIF1<0,…,SKIPIF1<0,故C錯(cuò)誤;由SKIPIF1<0,可得SKIPIF1<0,故B正確;由SKIPIF1<0,故D正確.故選:ABD.三、填空題28.(2022春·上海長寧·高二上海市延安中學(xué)??计谥校?duì)于數(shù)列SKIPIF1<0,若存在正整數(shù)SKIPIF1<0,使得對(duì)任意正整數(shù)SKIPIF1<0,都有SKIPIF1<0(其中SKIPIF1<0為非零常數(shù)),則稱數(shù)列SKIPIF1<0是以SKIPIF1<0為周期,以SKIPIF1<0為周期公比的“類周期性等比數(shù)列”.若“類周期性等比數(shù)列”的前4項(xiàng)為1,1,2,3,周期為4,周期公比為3,則數(shù)列SKIPIF1<0前21項(xiàng)的和為__.【答案】1090【分析】確定SKIPIF1<0,數(shù)列SKIPIF1<0從第二項(xiàng)起連續(xù)四項(xiàng)成等比數(shù)列,利用等比數(shù)列公式計(jì)算得到答案.【詳解】SKIPIF1<0,故SKIPIF1<0,由題意得數(shù)列SKIPIF1<0從第二項(xiàng)起連續(xù)四項(xiàng)成等比數(shù)列,SKIPIF1<0,則數(shù)列SKIPIF1<0前21項(xiàng)的和為SKIPIF1<0.故答案為:SKIPIF1<029.(2022秋·福建泉州·高二統(tǒng)考期末)對(duì)于數(shù)列SKIPIF1<0,記:SKIPIF1<0…,SKIPIF1<0(其中SKIPIF1<0),并稱數(shù)列SKIPIF1<0為數(shù)列SKIPIF1<0的k階商分?jǐn)?shù)列.特殊地,當(dāng)SKIPIF1<0為非零常數(shù)數(shù)列時(shí),稱數(shù)列SKIPIF1<0是k階等比數(shù)列.已知數(shù)列SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國公關(guān)行業(yè)全國市場(chǎng)開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國金融押運(yùn)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國企業(yè)管理培訓(xùn)行業(yè)資本規(guī)劃與股權(quán)融資戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新形勢(shì)下風(fēng)電主軸行業(yè)轉(zhuǎn)型升級(jí)戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國酒店行業(yè)并購重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 關(guān)于學(xué)校安裝減速帶調(diào)查問卷
- 2024年一年級(jí)語文下冊(cè)說課稿
- 烏海特種陶瓷制品項(xiàng)目可行性研究報(bào)告
- 2025年中國智能航空物流行業(yè)市場(chǎng)全景監(jiān)測(cè)及投資前景展望報(bào)告
- 中國木制衣架行業(yè)發(fā)展監(jiān)測(cè)及市場(chǎng)發(fā)展?jié)摿︻A(yù)測(cè)報(bào)告
- 物業(yè)管理流程:高端寫字樓服務(wù)
- JTG-B01-2014公路工程技術(shù)標(biāo)準(zhǔn)
- 海員常見疾病的保健與預(yù)防
- 易錯(cuò)題(試題)-2024一年級(jí)上冊(cè)數(shù)學(xué)北師大版含答案
- 傷口護(hù)理小組工作總結(jié)
- 蘇教版六年級(jí)科學(xué)上冊(cè)復(fù)習(xí)資料-已整理
- 科勒衛(wèi)浴行業(yè)分析
- 湖南省邵陽市初中聯(lián)考2023-2024學(xué)年九年級(jí)上學(xué)期期末地理試題
- 美術(shù)概論課件
- 綠籬移栽施工方案
- 機(jī)器人論文3000字范文
評(píng)論
0/150
提交評(píng)論