新高考數(shù)學(xué)三輪沖刺專題07 平面向量(3大易錯點(diǎn)分析+解題模板+舉一反三+易錯題通關(guān))(含解析)_第1頁
新高考數(shù)學(xué)三輪沖刺專題07 平面向量(3大易錯點(diǎn)分析+解題模板+舉一反三+易錯題通關(guān))(含解析)_第2頁
新高考數(shù)學(xué)三輪沖刺專題07 平面向量(3大易錯點(diǎn)分析+解題模板+舉一反三+易錯題通關(guān))(含解析)_第3頁
新高考數(shù)學(xué)三輪沖刺專題07 平面向量(3大易錯點(diǎn)分析+解題模板+舉一反三+易錯題通關(guān))(含解析)_第4頁
新高考數(shù)學(xué)三輪沖刺專題07 平面向量(3大易錯點(diǎn)分析+解題模板+舉一反三+易錯題通關(guān))(含解析)_第5頁
已閱讀5頁,還剩35頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

資料整理【淘寶店鋪:向陽百分百】專題07平面向量易錯點(diǎn)一:注意零向量書寫及三角形與平行四邊形適用前提(平面向量線性運(yùn)算)1.向量的有關(guān)概念(1)定義:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或模).(2)向量的模:向量SKIPIF1<0的大小,也就是向量SKIPIF1<0的長度,記作SKIPIF1<0.(3)特殊向量:①零向量:長度為0的向量,其方向是任意的.②單位向量:長度等于1個單位的向量.③平行向量:方向相同或相反的非零向量.平行向量又叫共線向量.規(guī)定:SKIPIF1<0與任一向量平行.④相等向量:長度相等且方向相同的向量.⑤相反向量:長度相等且方向相反的向量.2.向量的線性運(yùn)算和向量共線定理(1)向量的線性運(yùn)算運(yùn)算定義法則(或幾何意義)運(yùn)算律加法求兩個向量和的運(yùn)算三角形法則平行四邊形法則①交換律SKIPIF1<0②結(jié)合律SKIPIF1<0SKIPIF1<0減法求SKIPIF1<0與SKIPIF1<0的相反向量SKIPIF1<0的和的運(yùn)算叫做SKIPIF1<0與SKIPIF1<0的差三角形法則SKIPIF1<0數(shù)乘求實數(shù)SKIPIF1<0與向量SKIPIF1<0的積的運(yùn)算(1)SKIPIF1<0(2)當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的方向相同;當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的方向相同;當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0共線向量定理向量SKIPIF1<0與SKIPIF1<0共線,當(dāng)且僅當(dāng)有唯一的一個實數(shù)SKIPIF1<0,使得SKIPIF1<0.共線向量定理的主要應(yīng)用:(1)證明向量共線:對于非零向量SKIPIF1<0,SKIPIF1<0,若存在實數(shù)SKIPIF1<0,使SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0共線.(2)證明三點(diǎn)共線:若存在實數(shù)λ,使SKIPIF1<0,則A,B,C三點(diǎn)共線.(3)求參數(shù)的值:利用共線向量定理及向量相等的條件列方程(組)求參數(shù)的值.平面向量線性運(yùn)算問題的求解策略:(1)進(jìn)行向量運(yùn)算時,要盡可能地將它們轉(zhuǎn)化到三角形或平行四邊形中,充分利用相等向量、相反向量,三角形的中位線及相似三角形對應(yīng)邊成比例等性質(zhì),把未知向量用已知向量表示出來.(2)向量的線性運(yùn)算類似于代數(shù)多項式的運(yùn)算,實數(shù)運(yùn)算中的去括號、移項、合并同類項、提取公因式等變形手段在線性運(yùn)算中同樣適用.(3)用幾個基本向量表示某個向量問題的基本技巧:①觀察各向量的位置;②尋找相應(yīng)的三角形或多邊形;③運(yùn)用法則找關(guān)系;④化簡結(jié)果.解決向量的概念問題應(yīng)關(guān)注以下七點(diǎn):(1)正確理解向量的相關(guān)概念及其含義是解題的關(guān)鍵.(2)相等向量具有傳遞性,非零向量的平行也具有傳遞性.(3)共線向量即平行向量,它們均與起點(diǎn)無關(guān).(4)相等向量不僅模相等,而且方向要相同,所以相等向量一定是平行向量,而平行向量未必是相等向量.(5)向量可以平移,平移后的向量與原向量是相等向量.解題時,不要把它與函數(shù)圖象移動混為一談.(6)非零向量SKIPIF1<0與SKIPIF1<0的關(guān)系:SKIPIF1<0是SKIPIF1<0方向上的單位向量.(7)向量與數(shù)量不同,數(shù)量可以比較大小,向量則不能,但向量的模是非負(fù)實數(shù),故可以比較大小易錯提醒:(1)向量表達(dá)式中的零向量寫成SKIPIF1<0,而不能寫成0.(2)兩個向量共線要區(qū)別與兩條直線共線,兩個向量共線滿足的條件是:兩個向量所在直線平行或重合,而在直線中,兩條直線重合與平行是兩種不同的關(guān)系.(3)要注意三角形法則和平行四邊形法則適用的條件,運(yùn)用平行四邊形法則時兩個向量的起點(diǎn)必須重合,和向量與差向量分別是平行四邊形的兩條對角線所對應(yīng)的向量;運(yùn)用三角形法則時兩個向量必須首尾相接,否則就要把向量進(jìn)行平移,使之符合條件.(4)向量加法和減法幾何運(yùn)算應(yīng)該更廣泛、靈活如:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.例.如圖,在平行四邊形ABCD中,下列計算正確的是(

A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【詳解】對于A,根據(jù)平面向量加法的平行四邊形法則,則SKIPIF1<0,故A正確;對于B,在平行四邊形SKIPIF1<0中,SKIPIF1<0,則SKIPIF1<0,故B錯誤;對于C,SKIPIF1<0,故C正確;對于D,在平行四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,故D正確.故選:ACD.變式1:給出下列命題,其中正確的命題為()A.若SKIPIF1<0,則必有A與C重合,B與D重合,AB與CD為同一線段B.若SKIPIF1<0,則可知SKIPIF1<0C.若Q為SKIPIF1<0的重心,則SKIPIF1<0D.非零向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0都是共面向量,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0必共面【詳解】在平行四邊形ABDC中,滿足SKIPIF1<0,但不滿足A與C重合,B與D重合,AB與CD不為同一線段,A不正確.因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,B正確.若Q為SKIPIF1<0的重心,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,C正確.在三棱柱SKIPIF1<0中,令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0,SKIPIF1<0與SKIPIF1<0都是共面向量,但SKIPIF1<0,SKIPIF1<0,SKIPIF1<0不共面,D不正確.故選:BC.變式2:如圖所示,在平行四邊形ABCD中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.

(1)試用向量SKIPIF1<0來表示SKIPIF1<0;(2)AM交DN于O點(diǎn),求SKIPIF1<0的值.【詳解】(1)因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;(2)設(shè)SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0三點(diǎn)共線,所以存在實數(shù)SKIPIF1<0使SKIPIF1<0,由于向量SKIPIF1<0不共線,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.變式3:如圖所示,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0.

【詳解】解:在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,因此,SKIPIF1<0.1.已知SKIPIF1<0、SKIPIF1<0為不共線的向量,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(

)A.SKIPIF1<0三點(diǎn)共線 B.SKIPIF1<0三點(diǎn)共線C.SKIPIF1<0三點(diǎn)共線 D.SKIPIF1<0三點(diǎn)共線【答案】C【分析】根據(jù)平面向量共線定理及基本定理判斷即可.【詳解】因為SKIPIF1<0、SKIPIF1<0為不共線的向量,所以SKIPIF1<0、SKIPIF1<0可以作為一組基底,對于A:SKIPIF1<0,SKIPIF1<0,若存在實數(shù)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,方程組無解,所以SKIPIF1<0與SKIPIF1<0不共線,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)不共線,即A錯誤;對于B:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,同理可以說明不存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0不共線,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)不共線,即B錯誤;對于C:因為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)共線,即C正確;對于D:SKIPIF1<0,SKIPIF1<0,同理可以說明不存在實數(shù)SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0不共線,故SKIPIF1<0、SKIPIF1<0、SKIPIF1<0三點(diǎn)不共線,即D錯誤;故選:C2.如圖,在平行四邊形ABCD中,E是BC的中點(diǎn),F(xiàn)是線段AE上靠近點(diǎn)A的三等分點(diǎn),則SKIPIF1<0等于(

A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】利用平面向量的線性運(yùn)算求解.【詳解】解:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故選:C3.在四邊形SKIPIF1<0中,若SKIPIF1<0,則(

)A.四邊形SKIPIF1<0是平行四邊形 B.四邊形SKIPIF1<0是矩形C.四邊形SKIPIF1<0是菱形 D.四邊形SKIPIF1<0是正方形【答案】A【分析】由SKIPIF1<0推出SKIPIF1<0,再根據(jù)向量相等的定義得SKIPIF1<0且SKIPIF1<0,從而可得答案.【詳解】因為SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0且SKIPIF1<0,故四邊形SKIPIF1<0一定是平行四邊形,不一定是菱形、正方形和矩形,故A正確;BCD不正確.故選:A.4.已知SKIPIF1<0分別為SKIPIF1<0的邊SKIPIF1<0上的中線,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=(

A.SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0 B.SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0C.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0 D.SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0【答案】B【分析】根據(jù)向量的線性運(yùn)算即可聯(lián)立方程求解.【詳解】SKIPIF1<0分別為SKIPIF1<0的邊SKIPIF1<0上的中線,則SKIPIF1<0,SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故解得SKIPIF1<0故選:B5.如果SKIPIF1<0是平面α內(nèi)兩個不共線的向量,那么下列說法中不正確的是()①SKIPIF1<0可以表示平面α內(nèi)的所有向量;②對于平面α內(nèi)任一向量SKIPIF1<0,使SKIPIF1<0的實數(shù)對SKIPIF1<0有無窮多個;③若向量SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0④若實數(shù)λ、μ使得SKIPIF1<0,則λ=μ=0.A.①② B.②③ C.③④ D.②【答案】B【分析】由平面向量基本定理判斷①④②,由共線向量定理判斷③.【詳解】解:由平面向量基本定理可知,①④是正確.對于②,由平面向量基本定理可知,一旦一個平面的基底確定,那么任意一個向量在此基底下的實數(shù)對是唯一的,故錯誤;對于③,當(dāng)λ1λ2=0或μ1μ2=0時不一定成立,應(yīng)為λ1μ2-λ2μ1=0,故錯誤.故選:B.6.給出下列各式:①SKIPIF1<0,②SKIPIF1<0,③SKIPIF1<0,④SKIPIF1<0,對這些式子進(jìn)行化簡,則其化簡結(jié)果為SKIPIF1<0的式子的個數(shù)是()A.4 B.3 C.2 D.1【答案】A【分析】利用向量的加減法法則逐個分析判斷即可.【詳解】對于①,SKIPIF1<0,對于②,SKIPIF1<0,對于③,SKIPIF1<0,對于④,SKIPIF1<0,所以其化簡結(jié)果為SKIPIF1<0的式子的個數(shù)是4,故選:A7.已知平面向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,下列結(jié)論中正確的是()A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】D【分析】利用向量的概念及零向量判斷即可.【詳解】A:若SKIPIF1<0為非零向量,SKIPIF1<0為零向量時,有SKIPIF1<0但SKIPIF1<0不成立,錯誤;B:SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0不一定相等,錯誤;C:若SKIPIF1<0為零向量時,SKIPIF1<0,SKIPIF1<0不一定有SKIPIF1<0,錯誤;D:SKIPIF1<0說明SKIPIF1<0,SKIPIF1<0同向或至少有一個零向量,故SKIPIF1<0,正確.故選:D.8.設(shè)SKIPIF1<0與SKIPIF1<0是兩個不共線的向量,SKIPIF1<0,若A,B,D三點(diǎn)共線,則k的值為(

)A.-SKIPIF1<0 B.-SKIPIF1<0 C.-SKIPIF1<0 D.-SKIPIF1<0【答案】B【分析】根據(jù)向量共線的判定定理結(jié)合向量的線性運(yùn)算求解.【詳解】由題意可得:SKIPIF1<0,若A,B,D三點(diǎn)共線,所有必存在一個實數(shù)λ,使得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.故選:B.9.在SKIPIF1<0中,已知SKIPIF1<0,P是AB的垂直平分線l上的任一點(diǎn),則SKIPIF1<0(

)A.6 B.SKIPIF1<0 C.12 D.SKIPIF1<0【答案】B【分析】設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),結(jié)合SKIPIF1<0為線段SKIPIF1<0垂直平分線上的任意一點(diǎn),則有SKIPIF1<0,再將SKIPIF1<0都用SKIPIF1<0表示,結(jié)合數(shù)量積的運(yùn)算律即可得解.【詳解】設(shè)SKIPIF1<0為SKIPIF1<0的中點(diǎn),則SKIPIF1<0,因為SKIPIF1<0為線段SKIPIF1<0垂直平分線上的任意一點(diǎn),所以SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.

故選:SKIPIF1<0.10.已知拋物線C:SKIPIF1<0的焦點(diǎn)為F,準(zhǔn)線為l,點(diǎn)SKIPIF1<0,線段AF交拋物線C于點(diǎn)B,過點(diǎn)B作l的垂線,垂足為H,若SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】利用三角形相似及拋物線定義求解.【詳解】拋物線C:SKIPIF1<0的焦點(diǎn)SKIPIF1<0,準(zhǔn)線SKIPIF1<0為SKIPIF1<0,設(shè)準(zhǔn)線SKIPIF1<0與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0,∵SKIPIF1<0,由SKIPIF1<0與△SKIPIF1<0相似得:SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故A錯誤;由拋物線定義得SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故BC正確,D錯誤.故選:BC.11.下列各式中結(jié)果為零向量的為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BC【分析】根據(jù)平面線向量加法和減法的運(yùn)算法則逐一判斷即可.【詳解】因為SKIPIF1<0,所以選項A不符合題意;因為SKIPIF1<0,所以選項B符合題意;因為SKIPIF1<0,所以選項C符合題意;因為SKIPIF1<0,所以選項D不符合題意,故選:BC易錯點(diǎn)二:忽略基底選取原則(平面向量的基本定理及坐標(biāo)表示)1.平面向量基本定理和性質(zhì)(1)共線向量基本定理如果SKIPIF1<0,則SKIPIF1<0;反之,如果SKIPIF1<0且SKIPIF1<0,則一定存在唯一的實數(shù)SKIPIF1<0,使SKIPIF1<0.(口訣:數(shù)乘即得平行,平行必有數(shù)乘).(2)平面向量基本定理如果SKIPIF1<0和SKIPIF1<0是同一個平面內(nèi)的兩個不共線向量,那么對于該平面內(nèi)的任一向量SKIPIF1<0,都存在唯一的一對實數(shù)SKIPIF1<0,使得SKIPIF1<0,我們把不共線向量SKIPIF1<0,SKIPIF1<0叫做表示這一平面內(nèi)所有向量的一組基底,記為SKIPIF1<0,SKIPIF1<0叫做向量SKIPIF1<0關(guān)于基底SKIPIF1<0的分解式.注意:由平面向量基本定理可知:只要向量SKIPIF1<0與SKIPIF1<0不共線,平面內(nèi)的任一向量SKIPIF1<0都可以分解成形如SKIPIF1<0的形式,并且這樣的分解是唯一的.SKIPIF1<0叫做SKIPIF1<0,SKIPIF1<0的一個線性組合.平面向量基本定理又叫平面向量分解定理,是平面向量正交分解的理論依據(jù),也是向量的坐標(biāo)表示的基礎(chǔ).推論1:若SKIPIF1<0,則SKIPIF1<0.推論2:若SKIPIF1<0,則SKIPIF1<0.(3)線段定比分點(diǎn)的向量表達(dá)式如圖所示,在SKIPIF1<0中,若點(diǎn)SKIPIF1<0是邊SKIPIF1<0上的點(diǎn),且SKIPIF1<0(SKIPIF1<0),則向量SKIPIF1<0.在向量線性表示(運(yùn)算)有關(guān)的問題中,若能熟練利用此結(jié)論,往往能有“化腐朽為神奇”之功效,建議熟練掌握.DDACB(4)三點(diǎn)共線定理平面內(nèi)三點(diǎn)A,B,C共線的充要條件是:存在實數(shù)SKIPIF1<0,使SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0為平面內(nèi)一點(diǎn).此定理在向量問題中經(jīng)常用到,應(yīng)熟練掌握.A、B、C三點(diǎn)共線SKIPIF1<0存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0;SKIPIF1<0存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0;SKIPIF1<0存在唯一的實數(shù)SKIPIF1<0,使得SKIPIF1<0;SKIPIF1<0存在SKIPIF1<0,使得SKIPIF1<0.(5)中線向量定理如圖所示,在SKIPIF1<0中,若點(diǎn)D是邊BC的中點(diǎn),則中線向量SKIPIF1<0SKIPIF1<0,反之亦正確.DDACB2.平面向量的坐標(biāo)表示及坐標(biāo)運(yùn)算(1)平面向量的坐標(biāo)表示.在平面直角坐標(biāo)中,分別取與SKIPIF1<0軸,SKIPIF1<0軸正半軸方向相同的兩個單位向量SKIPIF1<0作為基底,那么由平面向量基本定理可知,對于平面內(nèi)的一個向量SKIPIF1<0,有且只有一對實數(shù)SKIPIF1<0使SKIPIF1<0,我們把有序?qū)崝?shù)對SKIPIF1<0叫做向量SKIPIF1<0的坐標(biāo),記作SKIPIF1<0.(2)向量的坐標(biāo)表示和以坐標(biāo)原點(diǎn)為起點(diǎn)的向量是一一對應(yīng)的,即有向量SKIPIF1<0SKIPIF1<0向量SKIPIF1<0SKIPIF1<0點(diǎn)SKIPIF1<0.(3)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即兩個向量的和與差的坐標(biāo)分別等于這兩個向量相應(yīng)坐標(biāo)的和與差.若SKIPIF1<0,SKIPIF1<0為實數(shù),則SKIPIF1<0,即實數(shù)與向量的積的坐標(biāo),等于用該實數(shù)乘原來向量的相應(yīng)坐標(biāo).(4)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0=SKIPIF1<0SKIPIF1<0,即一個向量的坐標(biāo)等于該向量的有向線段的終點(diǎn)的坐標(biāo)減去始點(diǎn)坐標(biāo).3.平面向量的直角坐標(biāo)運(yùn)算①已知點(diǎn)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0②已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0向量共線(平行)的坐標(biāo)表示1.利用兩向量共線的條件求向量坐標(biāo).一般地,在求與一個已知向量SKIPIF1<0共線的向量時,可設(shè)所求向量為SKIPIF1<0(SKIPIF1<0),然后結(jié)合其他條件列出關(guān)于SKIPIF1<0的方程,求出SKIPIF1<0的值后代入SKIPIF1<0即可得到所求的向量.2.利用兩向量共線求參數(shù).如果已知兩向量共線,求某些參數(shù)的取值時,則利用“若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的充要條件是SKIPIF1<0”解題比較方便.3.三點(diǎn)共線問題.A,B,C三點(diǎn)共線等價于SKIPIF1<0與SKIPIF1<0共線.4.利用向量共線的坐標(biāo)運(yùn)算求三角函數(shù)值:利用向量共線的坐標(biāo)運(yùn)算轉(zhuǎn)化為三角方程,再利用三角恒等變換求解.用平面向量基本定理解決問題的一般思路(1)先選擇一組基底,并運(yùn)用平面向量基本定理將條件和結(jié)論表示成該基底的線性組合,再進(jìn)行向量的運(yùn)算.(2)在基底未給出的情況下,合理地選取基底會給解題帶來方便,另外,要熟練運(yùn)用線段中點(diǎn)的向量表達(dá)式.向量的坐標(biāo)與表示向量的有向線段的起點(diǎn)、終點(diǎn)的相對位置有關(guān)系.兩個相等的向量,無論起點(diǎn)在什么位置,它們的坐標(biāo)都是相同的.易錯提醒:(1)平面向量基本定理中的基底必須是兩個不共線的向量.(2)選定基底后,通過向量的加、減、數(shù)乘以及向量平行的充要條件,把相關(guān)向量用這一組基底表示出來.(3)強(qiáng)調(diào)幾何性質(zhì)在向量運(yùn)算中的作用,用基底表示未知向量,常借助圖形的幾何性質(zhì),如平行、相似等。例.已知向量SKIPIF1<0=(2,1),SKIPIF1<0,則(

)A.若SKIPIF1<0,則SKIPIF1<0 B.向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0C.SKIPIF1<0與SKIPIF1<0的夾角余弦值為SKIPIF1<0 D.SKIPIF1<0【詳解】對于A選項,若SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,A正確;對于B選項,設(shè)向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0,B選項正確;對于C選項,SKIPIF1<0,SKIPIF1<0,C選項正確;對于D選項,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0不共線,D選項錯誤.故選:ABC.變式1.下列說法中錯誤的為(

)A.已知SKIPIF1<0,SKIPIF1<0且SKIPIF1<0與SKIPIF1<0的夾角為銳角,則實數(shù)SKIPIF1<0的取值范圍是SKIPIF1<0B.向量SKIPIF1<0,SKIPIF1<0不能作為平面內(nèi)所有向量的一組基底C.非零向量SKIPIF1<0,SKIPIF1<0,滿足SKIPIF1<0且SKIPIF1<0與SKIPIF1<0同向,則SKIPIF1<0D.非零向量SKIPIF1<0和SKIPIF1<0,滿足SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0【詳解】對于A,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0的夾角為銳角,SKIPIF1<0,且SKIPIF1<0(SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0),所以SKIPIF1<0且SKIPIF1<0,故A錯誤;對于B,向量SKIPIF1<0,即共線,故不能作為平面內(nèi)所有向量的一組基底,故B正確;對于C,向量是有方向的量,不能比較大小,故C錯誤;對于D,因為SKIPIF1<0,兩邊平方得,SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,而向量的夾角范圍為SKIPIF1<0,所以SKIPIF1<0和SKIPIF1<0的夾角為SKIPIF1<0,故D正確.故選:AC.變式2.(多選)下列說法中正確的是(

)A.若SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0共線,則SKIPIF1<0B.若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0不共線C.若A,B,C三點(diǎn)共線.則向量SKIPIF1<0都是共線向量D.若向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0【詳解】對選項A,SKIPIF1<0或SKIPIF1<0時,比例式無意義,故錯誤;對選項B,若SKIPIF1<0,SKIPIF1<0與SKIPIF1<0共線,則一定有SKIPIF1<0,故正確;對選項C,若A,B,C三點(diǎn)共線,則SKIPIF1<0在一條直線上,則SKIPIF1<0都是共線向量,故正確;對選項D,若向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故正確;故選:BCD變式3.已知SKIPIF1<0是平面內(nèi)的一組基底,則下列說法中正確的是(

)A.若實數(shù)m,n使SKIPIF1<0,則SKIPIF1<0B.平面內(nèi)任意一個向量SKIPIF1<0都可以表示成SKIPIF1<0,其中m,n為實數(shù)C.對于m,SKIPIF1<0,SKIPIF1<0不一定在該平面內(nèi)D.對平面內(nèi)的某一個向量SKIPIF1<0,存在兩對以上實數(shù)m,n,使SKIPIF1<0【詳解】解:根據(jù)基底的定義知AB正確;對于C,對于m,SKIPIF1<0,SKIPIF1<0在該平面內(nèi),故C錯誤;對于D,m,n是唯一的,故D錯誤.故選:AB.1.在梯形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0與SKIPIF1<0交于SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】結(jié)合已知梯形的性質(zhì)及向量加法及減法的三角形法則及向量共線定理對各選項進(jìn)行判斷即可.【詳解】由題意可得,SKIPIF1<0,故A正確;SKIPIF1<0,故B正確;SKIPIF1<0,故C錯誤;SKIPIF1<0,故D正確.故選:ABD.2.已知點(diǎn)SKIPIF1<0,SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0∥SKIPIF1<0,則(

)A.SKIPIF1<0時SKIPIF1<0與SKIPIF1<0方向相同B.SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0方向相同C.SKIPIF1<0時SKIPIF1<0與SKIPIF1<0方向相反D.SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0方向相反【答案】BD【分析】根據(jù)向量平行的坐標(biāo)表示求出SKIPIF1<0,再回代驗證方向相同或相反.【詳解】SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0方向相反,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0方向相同.故選:BD3.已知點(diǎn)SKIPIF1<0向量SKIPIF1<0則()A.SKIPIF1<0時SKIPIF1<0與SKIPIF1<0方向相同B.SKIPIF1<0時SKIPIF1<0與SKIPIF1<0方向相同C.SKIPIF1<0時SKIPIF1<0與SKIPIF1<0方向相反D.SKIPIF1<0時SKIPIF1<0與SKIPIF1<0方向相反【答案】BD【分析】根據(jù)向量共線的坐標(biāo)運(yùn)算求解.【詳解】SKIPIF1<0可得SKIPIF1<0又SKIPIF1<0可得SKIPIF1<0解得SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0則SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0方向相反,當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0與SKIPIF1<0方向相同.故選:BD.4.如果SKIPIF1<0是平面SKIPIF1<0內(nèi)兩個不共線的向量,那么下列說法中正確的是(

)A.SKIPIF1<0可以表示平面SKIPIF1<0內(nèi)的所有向量B.對于平面SKIPIF1<0內(nèi)任一向量SKIPIF1<0,使SKIPIF1<0的實數(shù)對SKIPIF1<0有無窮個C.若向量SKIPIF1<0與SKIPIF1<0共線,則有且只有一個實數(shù)SKIPIF1<0,使得SKIPIF1<0D.若存在實數(shù)SKIPIF1<0使得SKIPIF1<0,則SKIPIF1<0【答案】AD【分析】由平面向量基本定理可確定AD正確,B錯誤;通過反例可說明C錯誤.【詳解】SKIPIF1<0是平面SKIPIF1<0內(nèi)兩個不共線的向量,SKIPIF1<0可以作為平面SKIPIF1<0的一組基底;對于A,由平面向量基本定理可知:SKIPIF1<0可以表示平面SKIPIF1<0內(nèi)的所有向量,A正確;對于B,對于平面SKIPIF1<0內(nèi)任意向量SKIPIF1<0,有且僅有一個實數(shù)對SKIPIF1<0,使得SKIPIF1<0,B錯誤;對于C,當(dāng)SKIPIF1<0時,SKIPIF1<0與SKIPIF1<0均為零向量,滿足兩向量共線,此時使得SKIPIF1<0成立的SKIPIF1<0有無數(shù)個,C錯誤;對于D,由SKIPIF1<0得:SKIPIF1<0,又SKIPIF1<0不共線,SKIPIF1<0,即SKIPIF1<0,D正確.故選:AD.5.已知平面內(nèi)平行四邊形的三個頂點(diǎn)SKIPIF1<0則第四個頂點(diǎn)SKIPIF1<0的坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【分析】若構(gòu)成的平行四邊形為SKIPIF1<0,即SKIPIF1<0為一條對角線,設(shè)SKIPIF1<0,則由SKIPIF1<0中點(diǎn)也是SKIPIF1<0中點(diǎn),利用線段的中點(diǎn)公式求得SKIPIF1<0.同理可求得,構(gòu)成以SKIPIF1<0為對角線的平行四邊形SKIPIF1<0,和以SKIPIF1<0為對角線的平行四邊形SKIPIF1<0,對應(yīng)的SKIPIF1<0的坐標(biāo).【詳解】若構(gòu)成的平行四邊形為SKIPIF1<0,即SKIPIF1<0為一條對角線,設(shè)SKIPIF1<0,則由SKIPIF1<0中點(diǎn)也是SKIPIF1<0中點(diǎn),可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0;同理可得,若構(gòu)成以SKIPIF1<0為對角線的平行四邊形SKIPIF1<0,則SKIPIF1<0;以為SKIPIF1<0對角線的平行四邊形SKIPIF1<0,則SKIPIF1<0;所以第四個頂點(diǎn)SKIPIF1<0的坐標(biāo)為可以為:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.故選:ABC.6.已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,過下頂點(diǎn)A和右焦點(diǎn)SKIPIF1<0的直線與E交于另一點(diǎn)B,SKIPIF1<0與y軸交于點(diǎn)P,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.△SKIPIF1<0的內(nèi)切圓半徑為SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】根據(jù)給定條件,求出焦點(diǎn)及下頂點(diǎn)坐標(biāo),畫出圖形,再逐項分析計算、判斷作答.【詳解】依題意,橢圓SKIPIF1<0的焦點(diǎn)SKIPIF1<0,下頂點(diǎn)SKIPIF1<0,如圖,對于A,SKIPIF1<0,因此SKIPIF1<0,A正確;對于B,直線SKIPIF1<0,由SKIPIF1<0消去y得:SKIPIF1<0,則點(diǎn)SKIPIF1<0,于是SKIPIF1<0,B正確;對于C,SKIPIF1<0的周長為SKIPIF1<0,令其內(nèi)切圓半徑為SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,解得SKIPIF1<0,C錯誤;對于D,SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,即有SKIPIF1<0,因此SKIPIF1<0,D正確.故選:ABD7.設(shè)SKIPIF1<0,非零向量SKIPIF1<0,SKIPIF1<0,則(

).A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.存在SKIPIF1<0,使SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】ABD【分析】A選項,驗證SKIPIF1<0即可;B選項,驗證SKIPIF1<0;C選項,由題可得SKIPIF1<0,SKIPIF1<0,據(jù)此可判斷選項正誤;D選項,由題可得SKIPIF1<0,據(jù)此可判斷選項【詳解】A選項,SKIPIF1<0,則SKIPIF1<0,故A正確;B選項,SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,故B正確;C選項,假設(shè)存在SKIPIF1<0,使SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則可得SKIPIF1<0,故可得SKIPIF1<0,則假設(shè)不成立,故C錯誤;D選項,因SKIPIF1<0,則SKIPIF1<0,又由題可得SKIPIF1<0,則SKIPIF1<0,故D正確.故選:ABD8.已知向量SKIPIF1<0,則下列結(jié)論正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】AB【分析】根據(jù)向量平行的坐標(biāo)表示判斷A,根據(jù)向量垂直的坐標(biāo)表示判斷B,根據(jù)向量的模的坐標(biāo)表示判斷C,D.【詳解】對于A,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,A正確;對于B,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,B正確;對于C,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,C錯誤;對于D,因為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0,D錯誤;故選:AB.9.如圖,在SKIPIF1<0中,SKIPIF1<0是SKIPIF1<0的三等分點(diǎn),則(

)A.SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0【答案】AD【分析】根據(jù)平面向量線性運(yùn)算的性質(zhì),結(jié)合投影向量的定義、平面向量數(shù)量積的運(yùn)算性質(zhì)逐一判斷即可.【詳解】對于A,SKIPIF1<0,故A正確;對于B,因為SKIPIF1<0,所以SKIPIF1<0,由題意得SKIPIF1<0為SKIPIF1<0的一個三等分點(diǎn)(靠SKIPIF1<0點(diǎn)更近),所以SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0,故B不正確;對于C,SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故C錯誤;對于D,SKIPIF1<0,而SKIPIF1<0,代入得SKIPIF1<0,故選項D正確,故選:AD10.已知SKIPIF1<0,則下列敘述正確的是(

)A.若SKIPIF1<0,則SKIPIF1<0 B.若SKIPIF1<0,則SKIPIF1<0C.SKIPIF1<0的最小值為5 D.若向量SKIPIF1<0與向量SKIPIF1<0的夾角為鈍角,則SKIPIF1<0【答案】AD【分析】由向量平行和垂直的坐標(biāo)表示可得AB正誤;利用向量模長運(yùn)算可知SKIPIF1<0,由二次函數(shù)性質(zhì)可求得SKIPIF1<0,知C錯誤;利用向量夾角為鈍角,則數(shù)量積必定小于0,可判斷D.【詳解】對于A,若SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,A正確;對于B,若SKIPIF1<0,則SKIPIF1<0,解得:SKIPIF1<0,B錯誤;對于C,因為SKIPIF1<0,所以SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0,SKIPIF1<0,C錯誤;對于D,若向量SKIPIF1<0與向量SKIPIF1<0的夾角為鈍角,則SKIPIF1<0,解得SKIPIF1<0,由上可知,此時兩向量不共線,D正確.故選:AD.11.已知空間向量SKIPIF1<0=(1,-1,2),則下列說法正確的是(

)A.SKIPIF1<0B.向量SKIPIF1<0與向量SKIPIF1<0=(2,2,-4)共線C.向量SKIPIF1<0關(guān)于x軸對稱的向量為(1,1,-2)D.向量SKIPIF1<0關(guān)于yOz平面對稱的向量為(-1,1,-2)【答案】AC【分析】根據(jù)空間向量的模、共線、對稱等知識對選項進(jìn)行分析,從

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論