版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆云南省蒙自一中高二上數(shù)學(xué)期末統(tǒng)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若拋物線上的點到其焦點的距離是到軸距離的倍,則等于A. B.1C. D.22.已知直線l和拋物線交于A,B兩點,O為坐標原點,且,交AB于點D,點D的坐標為,則p的值為()A. B.1C. D.23.已知為偶函數(shù),且,則___________.4.()A.-2 B.0C.2 D.35.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或6.已知命題,,則A., B.,C., D.,7.圓關(guān)于直線l:對稱的圓的方程為()A. B.C. D.8.如圖,四面體-,是底面△的重心,,則()A B.C. D.9.命題“,使”的否定是()A.,有 B.,有C.,使 D.,使10.在正方體中,與直線和都垂直,則直線與的關(guān)系是()A.異面 B.平行C.垂直不相交 D.垂直且相交11.已知F為橢圓的右焦點,A為C的右頂點,B為C上的點,且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.12.橢圓的長軸長是()A.3 B.6C.9 D.4二、填空題:本題共4小題,每小題5分,共20分。13.若“x2-x-6>0”是“x>a”的必要不充分條件,則a的最小值為________.14.設(shè)f(x)=xlnx,若f′(x0)=2,則x0=________15.已知為曲線:上一點,,,則的最小值為______16.若滿足約束條件,則的最大值為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)記為等差數(shù)列的前n項和,已知.(1)求的通項公式;(2)求的最小值.18.(12分)已知數(shù)列{an}的首項a1=1,且an+1=(n∈N*).(1)證明:數(shù)列是等比數(shù)列;(2)設(shè)bn=-,求數(shù)列{bn}的前n項和Sn.19.(12分)如圖,在平面直角坐標系xOy中,已知拋物線C:y2=4x經(jīng)過點A(1,2),直線l:y=kx+b與拋物線C交于M,N兩點.(1)若,求直線l的方程;(2)當(dāng)AM⊥AN時,若對任意滿足條件的實數(shù)k,都有b=mk+n(m,n為常數(shù)),求m+2n的值.20.(12分)浙江省新高考采用“3+3”模式,其中語文、數(shù)學(xué)、外語三科為必考科目,另外考生根據(jù)自己實際需要在政治、歷史、地理、物理、化學(xué)、生物、技術(shù)7門科目中自選3門參加考試.下面是某校高一200名學(xué)生在一次檢測中的物理、化學(xué)、生物三科總分成績,以組距20分成7組:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],畫出頻率分布直方圖如下圖所示(1)求頻率分布直方圖中的值;(2)由頻率分布直方圖,求物理、化學(xué)、生物三科總分成績的第60百分位數(shù);(3)若小明決定從“物理、化學(xué)、生物、政治、技術(shù)”五門學(xué)科中選擇三門作為自己的選考科目,求小明選中“技術(shù)”的概率21.(12分)如圖,在四棱錐中,四邊形為正方形,已知平面,且,E為中點(1)證明:平面;(2)證明:平面平面22.(10分)已知橢圓的離心率為,以橢圓兩個焦點與短軸的一個端點為頂點構(gòu)成的三角形的面積為(1)求橢圓C的標準方程;(2)過點作直線l與橢圓C相切于點Q,且直線l斜率大于0,過線段PQ的中點R作直線交橢圓于A,B兩點(點A,B不在y軸上),連結(jié)PA,PB,分別與橢圓交于點M,N,試判斷直線MN的斜率是否為定值;若是,請求出該定值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)拋物線的定義及題意可知3x0=x0+,得出x0求得p,即可得答案【詳解】由題意,3x0=x0+,∴x0=∴∵p>0,∴p=2.故選D【點睛】本題主要考查了拋物線的定義和性質(zhì).考查了考生對拋物線定義的掌握和靈活應(yīng)用,屬于基礎(chǔ)題2、B【解析】由垂直關(guān)系得出直線l方程,聯(lián)立直線和拋物線方程,利用韋達定理以及數(shù)量積公式得出p的值.【詳解】,,即聯(lián)立直線和拋物線方程得設(shè),則解得故選:B3、8【解析】由已知條件中的偶函數(shù)即可計算出結(jié)果,【詳解】為偶函數(shù),且,.故答案為:84、C【解析】根據(jù)定積分公式直接計算即可求得結(jié)果【詳解】由故選:C5、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設(shè)反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標準方程;2、直線的方程;3、直線與圓的位置關(guān)系.6、A【解析】根據(jù)全稱命題與特稱命題互為否定的關(guān)系,即可求解,得到答案【詳解】由題意,根據(jù)全稱命題與特稱命題的關(guān)系,可得命題,,則,,故選A【點睛】本題主要考查了含有一個量詞的否定,其中解答中熟記全稱命題與特稱性命題的關(guān)系是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題7、A【解析】首先求出圓的圓心坐標與半徑,再設(shè)圓心關(guān)于直線對稱的點的坐標為,即可得到方程組,求出、,即可得到圓心坐標,從而求出對稱圓的方程;【詳解】解:圓的圓心為,半徑,設(shè)圓心關(guān)于直線對稱的點的坐標為,則,解得,即圓關(guān)于直線對稱的圓的圓心為,半徑,所以對稱圓的方程為;故選:A8、B【解析】根據(jù)空間向量的加減運算推出,進而得出結(jié)果.【詳解】因為,所以,故選:B9、B【解析】根據(jù)特稱命題的否定是全稱命題即可得正確答案【詳解】存在量詞命題的否定,只需把存在量詞改成全稱量詞,并把后面的結(jié)論否定,所以“,使”的否定為“,有”,故選:B.10、B【解析】以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,根據(jù)向量垂直的坐標表示求出,再利用向量的坐標運算可得,根據(jù)共線定理即可判斷.【詳解】設(shè)正方體的棱長為1.以為坐標原點,所在直線分別為軸,軸,軸建立空間直角坐標系,則.設(shè),則,取.,.故選:B【點睛】本題考查了空間向量垂直的坐標表示、空間向量的坐標表示、空間向量共線定理,屬于基礎(chǔ)題.11、D【解析】根據(jù)題意表示出點的坐標,再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當(dāng)時,,得,由題意可得點在第一象限,所以,因為直線AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D12、B【解析】根據(jù)橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】解出不等式x2-x-6>0,由“x2-x-6>0”是“x>a”的必要不充分條件,求出a的最小值.【詳解】由x2-x-6>0,解得x<-2或x>3.因為“x2-x-6>0”是“x>a”的必要不充分條件,所以{x|x>a}是{x|x<-2或x>3}的真子集,即a≥3,故答案為:3.【點睛】本題考查充分條件和必要條件的應(yīng)用,考查一元二次不等式的解法,屬于基礎(chǔ)題.14、【解析】f(x)=xlnx∴f'(x)=lnx+1則f′(x0)=lnx0+1=2解得:x0=e15、【解析】曲線是拋物線的右半部分,是拋物線的焦點,作出拋物線的準線,把轉(zhuǎn)化為到準線的距離,則到準線的距離為所求距離和的最小值【詳解】易知曲線是拋物線的右半部分,如圖,因為拋物線的準線方程為,是拋物線的焦點,所以等于到直線的距離.過作該直線的垂線,垂足為,則的最小值為故答案為:16、7【解析】畫出約束條件所表示的平面區(qū)域,結(jié)合圖象和直線在軸上的截距,確定目標函數(shù)的最優(yōu)解,代入即可求解.【詳解】畫出不等式組所表示的平面區(qū)域,如圖所示,目標函數(shù)可化為,當(dāng)直線過點點時,此時直線在軸上的截距最大,此時目標函數(shù)取得最大值,又由,解得,即,所以目標函數(shù)的最大值為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)設(shè)數(shù)列的公差為d,由,利用等差數(shù)列的前n項和公式求解;(2)利用等差數(shù)列的前n項和公式結(jié)合二次函數(shù)的性質(zhì)求解.【小問1詳解】解:設(shè)數(shù)列的公差為d,∵,∴,解得2,∴.【小問2詳解】由(1)知2,∴,,,∴當(dāng)時,取得最小值-16.18、(1)證明見解析.(2)2-.【解析】(1)根據(jù)遞推公式,得到,推出,即可證明數(shù)列是等比數(shù)列;(2)先由(1)求出,即bn=,再錯位相減法,即可求出數(shù)列的和.【小問1詳解】(1)證明:因為an+1=,所以==+,所以-=-=,又a1-≠0,所以數(shù)列為以-=為首項,為公比的等比數(shù)列.【小問2詳解】解:由(1)可得=+,所以bn=,所以Sn=+++…+,①所以Sn=++…++,②①-②得,Sn=++…+-=-,解得Sn=2-.19、(1)(2)3或【解析】(1)由可得,則可得直線為,設(shè),然后將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系,由可得,三個式子結(jié)合可求出,從而可得直線方程,(2)將直線方程代入拋物線方程中消去,再利用根與系數(shù)的關(guān)系表示出,再結(jié)合直線方程表示出,由AM⊥AN可得,化簡結(jié)合前面的式子可求出或,從而可可求出的值,進而可求得答案【小問1詳解】因為A(1,2),,所以,則直線為,設(shè),由,得,由,得則,因為,所以,所以,所以,所以,解得,所以直線的方程為,即,【小問2詳解】設(shè),由,得,由,得,則,所以,,因為AM⊥AN,所以,所以,即,所以,所以,所以或,所以或,所以或20、(1)=0.005(2)232(3)【解析】(1)由頻率和為1列方程求解即可,(2)由于前3組的頻率和小于0.6,前4組的頻率和大于0.6,所以三科總分成績的第60百分位數(shù)在第4組內(nèi),設(shè)第60百分位數(shù)為,則0.45+0.0125×(?220)=0.6,從而可求得結(jié)果,(3)利用列舉法求解即可【小問1詳解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小問2詳解】因為(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科總分成績的第60百分位數(shù)在[220,240)內(nèi),設(shè)第60百分位數(shù)為,則0.45+0.0125×(?220)=0.6,解得=232,即第60百分位數(shù)為232【小問3詳解】將物理、化學(xué)、生物、政治、技術(shù)5門學(xué)科分別記作.則事件A表示小明選中“技術(shù)”,則,所以P(A)=21、(1)證明見解析(2)證明見解析【解析】(1)設(shè)與交于點,連結(jié),易證,再利用線面平行的判斷定理即可證得答案;(2)利用線面垂直的判定定理可得平面,再由面面垂直的判斷定理即可.【小問1詳解】連接交于,連接因為底面是正方形,所以為中點,因為在中,是的中點,所以,因為平面平面,所以平面【小問2詳解】側(cè)棱底面底面,所以,因為底面是正方形,所以,因為與為平面內(nèi)兩條相交直線,所以平面,因為平面,所以平面平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 感恩節(jié)活動總結(jié) 15篇
- 感恩老師的發(fā)言稿集合15篇
- 律師執(zhí)業(yè)年度工作總結(jié)
- 供電工程施工方案(技術(shù)標)
- 年會代表團隊發(fā)言稿范文(10篇)
- 湖南省株洲市高三教學(xué)質(zhì)量統(tǒng)一檢測(一) 語文試題(含答案)
- 2025版汽車零部件銷售訂購合同(年度版)
- 二零二五版淘寶年度合作運營效果跟蹤協(xié)議3篇
- 精細化人力資源管理的月度工作計劃
- 二零二五年度汽車試駕場地安全使用合同3篇
- 勵志課件-如何做好本職工作
- 2024年山東省濟南市中考英語試題卷(含答案解析)
- 2024年社區(qū)警務(wù)規(guī)范考試題庫
- 2024年食用牛脂項目可行性研究報告
- 靜脈治療護理技術(shù)操作標準(2023版)解讀 2
- 2024年全國各地中考試題分類匯編(一):現(xiàn)代文閱讀含答案
- 2024-2030年中國戶外音箱行業(yè)市場發(fā)展趨勢與前景展望戰(zhàn)略分析報告
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 家務(wù)分工與責(zé)任保證書
- 武強縣華浩數(shù)控設(shè)備科技有限公司年產(chǎn)9000把(只)提琴、吉他、薩克斯等樂器及80臺(套)數(shù)控雕刻設(shè)備項目環(huán)評報告
- 安全生產(chǎn)法律法規(guī)匯編(2024年4月)
評論
0/150
提交評論