ibm qews overview forenablement概述啟用研討會_第1頁
ibm qews overview forenablement概述啟用研討會_第2頁
ibm qews overview forenablement概述啟用研討會_第3頁
ibm qews overview forenablement概述啟用研討會_第4頁
ibm qews overview forenablement概述啟用研討會_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

IBM’sQualityEarlyWarningSystem

EarlierandMoreDefinitiveProblemDetection

IntegratedSupplyChainEngineering22ISCEngineeringHistoryofsixsigma(1)Sixsigmaismostlyfoundedonmethodsthathavebeenaroundfordecades:Pre-industrialrevolutionSkilledcraftsmencontrolledthequalityandthedesignoftheirproductsfrombeginningtoend1798EliWhitneyMassproductionandinterchangeableparts1850'sIntroductionofgages1880'sFrederickTaylorIntroductionofassemblylinesandpartitioningofwork1920'sW.A.ShewhartIntroductionofStatisticalProcessControlAssignablecausevs.changecauseUseofstatisticforimprovement1930'sDodge&RomigConceptofacceptabilitybasedonsamplingresult(AQL)1950'sDemingPromotionofPlan-Do-Study-ActcycleTopmanagementinvolvementConcentrationonsystemimprovement1950'sJuranQualityplanningisusedtocreatetheprocessthatwillenableone

tomeetthedesiredgoals33ISCEngineeringHistoryofSixSigma(2)Sixsigmaismostlyfoundedonmethodsthathavebeenaroundfordecades:1960'sKaoruIshikawaQualitycomesfirstCustomercomesfirstDecisionsarebasedonfactsanddataEngagementofManagementCross-functionalcommittees1980'sPhilipCrosby14Stepapproachtoachievecompanywidequalityimprovement1987ISOSeriesofqualitystandardsthatdetailedthekeyelements

ofsoundqualitypractices1987MalcolmBaldrigeNationalQualityAwardPromotionofbestpracticesharingandtheestablishmentofabenchmarkforqualitysystems1987MotorolaStructuredmethodologyFocusoncustomerneeds1995GeneralElectricCompanywideimplementation,demonstratedleadership44ISCEngineeringWhatisSixSigma?SixSigmaemergedin1987whenMotorolapublishedtheirSixSigmaqualityprogram

SixSigmaisametricthatdemonstratesqualitylevelsat99.9997%performance

forproducts,processesandservices

SixSigmaisavisionandanapproachtoachievingthehighestcustomer

satisfactionthroughofferingproducts,processesandservicesatthehighest

qualityandlowestcosts

SixSigmaisanintegratedapproachtoprocessexcellence

SixSigmaisabusinessconceptinresponsetocustomers’demandforhighquality

SixSigmademandscompetenceinstatisticstoensuredecisionsbasedonfacts-7-6-5-4-3-2-10+1+2+3+4+5+6+755ISCEngineeringLeanSigmaisbasedonthepracticallearningoforganizationsimprovingtheirprocessesforover50yearsHistoryofLeanSigma66ISCEngineeringWhatisLeanSigmaLeanSigmaisanevolutionaryimprovementtoSixSigmafortransactionalprocessescommone.g.inservicesbutalsomanufacturingItdevelopsadeepprocessunderstandingintermsofvalueflowdependenciesIttriestoimproveefficiencyinprocessesItsrootsareindependentfromSixSigma;acommonreferenceforleanmanufacturingistheToyotaProductionSystem(TPS)LeanMethodologyIncreaseefficiencySimplifyworkflowsFocusonhigh-valuestepsEliminatewasteALeanenterpriseisonethatdeliversvaluetoitsstakeholderswithlittleornowastefulconsumptionofresources.ProductorServiceOutputsSixSigmaTMMethodologiesIncreaseconsistencyReducevariationEliminatedefectsInaSixSigmaenterprise,everyoneisfocusedonidentifyingandeliminatingdefects.Customer-drivenCustomer-driven77ISCEngineeringWhyisitimportanttocompanies?QualityCostofFailureCostofavoidingfailuresHiddenCostsWarrantyCostsTrainingReducedproductivityduetolowerutilizationofexistingresourcesCustomerComplaintVisitsCapabilityStudiesFieldserviceAdvancedQualityPlanningReturns&RecallsSalesthatwouldhavebeenoccurredduetomeetingcustomerneedsLiabilitySuitsVendorSurveysInspection&TestCosttoCustomerMaintenanceAuditsScrap&ReworkChangestoDesignChangestoProcessQualitycostisanycostthatacompanywouldnothaveincurrediftheirproductorprocesswereperfect.8MostCompaniesuseSPCinQualitymonitoringThenatureofSPC/RateBasedmanagementisreactiveBasedonpastperformanceandstatisticalrelevanceUnabletopredictwhat“MAY”occurinthefutureDoesnotrankwarningstofocusonpotentialemergingissuesNeedtopredictdefecttrendsbeforecumulativeevidenceisavailable9BladesIBMIntegratedSupplyChainEngineeringScopeRawParts/

DiscreteComponentsSub-SystemsIntegratedSystems/SolutionsCables/ConnectorsLogic/Active/Optic/PassiveMemory/DIMMs/SRAM/DRAMDrivesCardAssembliesPowerSubsystemsThermalSubsystemsMechanicalsNodeAssembliesPrintedCircuitBoards/FlexCableAssemblyMainframesServersandHPCStorage1010ISCEngineeringQEWSisanenterprise-levelsystemwhichusesuniqueIBMtechnologytodetectandprioritizequalityproblemsandparametricshiftsearlierandmoredefinitivelythancanbedoneusingtraditionaltechniquesofstatisticalprocesscontrol.QEWSanswersthequestion:WhatistheIBMQualityEarlyWarningSystem?Hasanythingchangedenoughtorequireaction?1111ISCEngineeringQualityproblemsareidentifiedmoreeffectively:earliermoredefinitivelyvisiblyEngineeringproductivityishigher:muchlesstimeisspentdeterminingwheretheproblemsaremoretimeisspentworkingproactivelyonissueswhichcouldeproblemsallengineersareempoweredwithexpert-levelanalyticaljudgmentBrandimageandbrandvaluehavebeenwellprotected,despitecontinuingcostreductions,manpowerreductions,andincreasedrelianceonsuppliersIBM’sexperiencewithQEWS1212ISCEngineeringThevalueofQEWSLowerCostsinManufacturing

reducedreworkreducedscrapinDistribution

fewerrecallsinWarranty

fewerclaimsImprovedProductivityinManufacturing/PurchasedProduct

reducedreworkreducedscrapincreasedcapacityutilizationmoreon-timeshipmentshigherassuranceofdeliveryofqualityproductsinEngineering

moreproductcoverage,andmoreeffectivecoverage

withexistingengineeringresourcesprioritizationofthemostpressingissuessingleeffectiveprocessfortheentireenterpriseImprovedBrandValue

improvedbrandimageprotecthigh-stakes,highvolumeproductlauncheshighertop-linegrowthandcustomerretention1313ISCEngineeringAtpointswhereatest,measurement,orinspection

ismade:Inthesupplychain:suppliers’finaltestinginspectionofrawmaterialsinginspectionofprocuredcomponentsInmanufacturing:atindividualproductionoperationsatfinalproducttestInproductfieldperformancewarrantyclaimsWherecanQEWSbeapplied?1414ISCEngineeringQEWSAnalysisCapabilitiesModuleExamplesTypicalApplicationsAttributedatafailureratesyieldssortcategoriesMonitoringqualityofcomponentsprocuredfromsuppliersMonitoringqualityofmanufacturingoperationsviainlinemeasurementsMonitoringqualityofmanufacturingoperationsviafinalproducttestReliabilitydatawarrantyclaimsstresstestsMonitoringqualityofproductviaperiodicreliabilitymonitoringtestsMonitoringqualityofproductincustomeruseenvironmentsDetectingproductwearout1515ISCEngineeringSPCcharts:Whichonesrequireattention?1616ISCEngineeringQEWSmakeschangesvisible1717ISCEngineeringQEWSDemonstrationResults:EarlierDetectionThischartshowsQEWSanalysisresultsforthesamesetofdataasabove.Thex-axisisalignedintimetothechartabove.QEWSalertswhenthecumulativeevidencecrossesabovethehorizontalthresholdline(inblack.)Inthiscase,QEWSalerted8weeksearlierthanSPC.ThischartshowsSPCanalysisresultsforasetofyielddata.SPCalertswhenapointfallsoutsidethecontrollimits(attheextremeright-handsideofthechart.)1stQEWSalert1stSPCalert8weeks1818ISCEngineeringQEWSDemonstrationResults:DefinitiveDetection1stQEWSalertcontinuingalertsmountingevidence1stSPCalertnoSPCalerts2ndSPCalertForthesamedataasabove,QEWSalerts,thenstaysinalertmode(abovethehorizontalblackthresholdline.)Thepositiveslopeofthecumulativeevidencelineindicatesthequalityproblemisgettingworse.Fromthefirstalertonward,QEWSpresentsaclearmessagethatactionshouldbetaken.Forthissetofdata,SPCalertsonce,thendoesnotalertagainuntilmanypointslater.Manyengineerswoulddismissthefirstalertasananomaly,andnottakeactionuntilthesecondalert.1919ISCEngineeringABStrategicdatasources:

linksanddataformatsTargetoptimizationalgorithmInnovative,verylarge-scale

datacubedeploymentDatastoreanddashboardUserinterface,dashboardandanalytics(supplierandOEM)PrioritizationalgorithmCPatentpendingSupplier,Manufacturing,FieldQEWSEngineThresholdsettingalgorithmQEWScombinesadvancedanalytics,visualizationandworkflowtocreateasystemthatiseffective,easytouse,andeasytodeploy

2020ISCEngineeringQEWSDashboard:VisualQualityManagement2121ISCEngineeringQEWSDashboard:drill-downengineeringtoolsViewSPCdataViewAVTdataViewQEWSdataViewHistoryRawdatadrill-down2222ISCEngineeringQEWScasestudy:fieldreliabilitymonitoringIndustryAutomotiveClientGlobalautomobilemanufacturerQEWSmoduleReliabilitydataanalysisClient’sObjectivesImproveproductreliabilityImprovebrandimageReducewarrantyclaimscostsClient’sChallenges/IssuesThenumberofvehiclesrepairedunderwarrantyissmallcomparedtotheentirefieldpopulation,makingearlydetectionoftrendsdifficultWearoutmechanisms,ifnotdetectedearly,willcauseepidemicratesofproductfailureAnalyticmethodsforwarrantydataarenotautomatedIBM’sApproachUsedclientexperiencetotargetareasforanalyticimprovementEstablishedmethodologyforQEWSmonitoringofvehiclewarrantyclaimsdataTailoredQEWSanalyticstoclient-specificrequirementsResults

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論