版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省遂寧第二中學(xué)2025屆高二上數(shù)學(xué)期末質(zhì)量跟蹤監(jiān)視試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.兩位同學(xué)課余玩一種類似于古代印度的“梵塔游戲”:有3個柱子甲、乙、丙,甲柱上有個盤子,最上面的兩個盤子大小相同,從第二個盤子往下大小不等,大的在下,小的在上(如圖).把這個盤子從甲柱全部移到乙柱游戲結(jié)束,在移動的過程中每次只能移動一個盤子,甲、乙、丙柱都可以利用,且3個柱子上的盤子始終保持小的盤子不能放在大的盤子之下.設(shè)游戲結(jié)束需要移動的最少次數(shù)為,則當(dāng)時,和滿足A. B.C. D.2.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.在等差數(shù)列中,為其前項和,若.則()A. B.C. D.4.如圖,在棱長為2的正方體中,點P在截面上(含邊界),則線段的最小值等于()A. B.C. D.5.繞著它的一邊旋轉(zhuǎn)一周得到的幾何體可能是()A.圓臺 B.圓臺或兩個圓錐的組合體C.圓錐或兩個圓錐的組合體 D.圓柱6.函數(shù),則的值為()A B.C. D.7.在中,內(nèi)角的對邊分別為,若,則角為A. B.C. D.8.若,則()A.0 B.1C. D.29.已知直線與圓相切,則的值是()A. B.C. D.10.已知函數(shù)(是的導(dǎo)函數(shù)),則()A.21 B.20C.16 D.1111.已知等比數(shù)列的公比q為整數(shù),且,,則()A.2 B.3C.-2 D.-312.如圖所示,在平行六面體中,,,,點是的中點,點是上的點,且,則向量可表示為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,則p=__14.盒子中放有大小和質(zhì)地相同的2個白球、1個黑球,從中隨機摸取2個球,恰好都是白球的概率為___________.15.已知數(shù)列滿足,則=________.16.點為雙曲線上一點,為焦點,如果則雙曲線的離心率為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點在直線上(1)求拋物線的方程(2)設(shè)直線經(jīng)過點,且與拋物線有且只有一個公共點,求直線的方程18.(12分)某公園有一形狀可抽象為圓柱的標(biāo)志性景觀建筑物,該建筑物底面直徑為8米,在其南面有一條東西走向的觀景直道,建筑物的東西兩側(cè)有與觀景直道平行的兩段輔道,觀景直道與輔道距離10米.在建筑物底面中心O的東北方向米的點A處,有一全景攝像頭,其安裝高度低于建筑物的高度(1)在西輔道上距離建筑物1米處的游客,是否在該攝像頭的監(jiān)控范圍內(nèi)?(2)求觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度19.(12分)已知函數(shù)(1)求函數(shù)的單調(diào)遞減區(qū)間;(2)在中,角,,所對的邊分別為,,,且滿足,,求面積的最大值20.(12分)設(shè)等差數(shù)列的各項均為整數(shù),且滿足對任意正整數(shù),總存在正整數(shù),使得,則稱這樣的數(shù)列具有性質(zhì)(1)若數(shù)列的通項公式為,數(shù)列是否具有性質(zhì)?并說明理由;(2)若,求出具有性質(zhì)的數(shù)列公差的所有可能值;(3)對于給定的,具有性質(zhì)的數(shù)列是有限個,還是可以無窮多個?(直接寫出結(jié)論)21.(12分)某快遞公司近60天每天攬件數(shù)量的頻率分布直方圖如下圖所示(同一組數(shù)據(jù)用該區(qū)間的中點值作代表).(1)求這60天每天包裹數(shù)量的平均值和中位數(shù);(2)在這60天中包裹件數(shù)在和的兩組中,用分層抽樣的方法抽取30件,求在這兩組中應(yīng)分別抽取多少件?22.(10分)已知拋物線的焦點為,且為圓的圓心.過點的直線交拋物線與圓分別為,,,(從上到下)(1)求拋物線方程并證明是定值;(2)若,的面積比是,求直線的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】通過寫出幾項,尋找規(guī)律,即可得到和滿足的遞推公式.【詳解】若甲柱有個盤,甲柱上的盤從上往下設(shè)為,其中,,當(dāng)時,將移到乙柱,只移動1次;當(dāng)時,將移到乙柱,將移到乙柱,移動2次;當(dāng)時,將移到丙柱,將移到丙柱,將移到乙柱,再將移到乙柱,將移到乙柱,;當(dāng)時,將上面的3個移到丙柱,共次,然后將移到乙柱,再將丙柱的3個移到乙柱,共次,所以次;當(dāng)時,將上面的4個移到丙柱,共次,然后將移到乙柱,再將丙柱的4個移到乙柱,共次,所以次;……以此類推,可知,故選.【點睛】主要考查了數(shù)列遞推公式的求解,屬于中檔題.這類型題的關(guān)鍵是寫出幾項,尋找規(guī)律,從而得到對應(yīng)的遞推公式.2、B【解析】求出不等式的等價形式,結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可【詳解】由得或,由得,因為或推不出,但能推出或成立,所以“”是“”的必要不充分條件,故選:B3、C【解析】利用等差數(shù)列的性質(zhì)和求和公式可求得的值.【詳解】由等差數(shù)列的性質(zhì)和求和公式可得.故選:C.4、B【解析】根據(jù)體積法求得到平面的距離即可得【詳解】由題意的最小值就是到平面的距離正方體棱長為2,則,,設(shè)到平面的距離為,由得,解得故選:B5、C【解析】討論是按直角邊旋轉(zhuǎn)還是按斜邊旋轉(zhuǎn)【詳解】按直角邊選擇可得下圖圓錐:如果按直角邊旋轉(zhuǎn)可得下圖的兩個圓錐的組合體:故選:C6、B【解析】求出函數(shù)的導(dǎo)數(shù),代入求值即可.【詳解】函數(shù),故,所以,故選:B7、A【解析】因為,那么結(jié)合,所以cosA==,所以A=,故答案為A考點:正弦定理與余弦定理點評:本題主要考查正弦定理與余弦定理的基本應(yīng)用,屬于中等題.8、D【解析】由復(fù)數(shù)的乘方運算求,再求模即可.【詳解】由題設(shè),,故2.故選:D9、D【解析】直線與圓相切,直接通過求解即可.【詳解】因為直線與圓相切,所以圓心到直線的距離,所以,.故選:D10、B【解析】根據(jù)已知求出,即得解.【詳解】解:由題得,所以.故選:B11、A【解析】由等比數(shù)列的性質(zhì)有,結(jié)合已知求出基本量,再由即可得答案.【詳解】因為,,且q為整數(shù),所以,,即q=2.所以.故選:A12、D【解析】根據(jù)空間向量加法和減法的運算法則,以及向量的數(shù)乘運算即可求解.【詳解】解:因為在平行六面體中,,,,點是的中點,點是上的點,且,所以,故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】根據(jù)已知條件,結(jié)合拋物線的定義,即可求解【詳解】解:∵拋物線C:y2=2px(p>0)上的點P(1,y0)(y0>0)到焦點的距離為2,∴由拋物線的定義可得,,解得p=2故答案為:214、【解析】根據(jù)題意得到,計算得到答案.【詳解】根據(jù)題意:.故答案為:15、4【解析】根據(jù)對數(shù)的運算性質(zhì)得,可得,即數(shù)列是以2為公比的等比數(shù)列,代入等比數(shù)列的通項公式化簡可得值.【詳解】因為,所以,即數(shù)列是以2為公比的等比數(shù)列,所以.故答案為:4.【點睛】本題考查等比數(shù)列的定義和通項公式以及對數(shù)的運算性質(zhì),熟練運用相應(yīng)的公式即可,屬于基礎(chǔ)題.16、【解析】利用雙曲線的定義、離心率的計算公式、兩角和差的正弦公式即可得出.【詳解】由可得,根據(jù)雙曲線的定義可得:,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的方程為、、【解析】(1)求得點的坐標(biāo),由此求得,進(jìn)而求得拋物線的方程.(2)結(jié)合圖象以及判別式求得直線的方程.【小問1詳解】拋物線的焦點在軸上,且開口向上,直線與軸的交點為,則,所以,拋物線的方程為.【小問2詳解】當(dāng)直線的斜率不存在時,直線與拋物線只有一個公共點.那個直線的斜率存在時,設(shè)直線的方程為,,,,解得或.所以直線的方程為或.綜上所述,的方程為、、.18、(1)不在(2)17.5米【解析】(1)以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系,求出直線AB方程,判斷直線AB與圓O的位置關(guān)系即可;(2)攝像頭監(jiān)控不會被建筑物遮擋,只需求出過點A的直線l與圓O相切時的直線方程即可.【小問1詳解】以O(shè)為原點,正東方向為x軸正方向建立如圖所示的直角坐標(biāo)系則,觀景直道所在直線的方程為依題意得:游客所在點為則直線AB的方程為,化簡得,所以圓心O到直線AB的距離,故直線AB與圓O相交,所以游客不在該攝像頭監(jiān)控范圍內(nèi).【小問2詳解】由圖易知:過點A的直線l與圓O相切或相離時,攝像頭監(jiān)控不會被建筑物遮擋,所以設(shè)直線l過A且恰與圓O相切,①若直線l垂直于x軸,則l不可能與圓O相切;②若直線l不垂直于x軸,設(shè),整理得所以圓心O到直線l的距離為,解得或,所以直線l的方程為或,即或,設(shè)這兩條直線與交于D,E由,解得,由,解得,所以,觀景直道不在該攝像頭的監(jiān)控范圍內(nèi)的長度為17.5米.19、(1)(2)【解析】(1)由三角恒等變換公式化簡,根據(jù)三角函數(shù)性質(zhì)求解(2)由余弦定理與面積公式,結(jié)合基本不等式求解【小問1詳解】由己知可得,由,解得:,故的單調(diào)遞減區(qū)間是【小問2詳解】,,故,得,由余弦定理得:,得,當(dāng)且僅當(dāng)時等號成立,故,面積最大值為20、(1)數(shù)列具有性質(zhì),理由見解析;(2),;(3)有限個.【解析】(1)由題意,由性質(zhì)定義,即可知是否具有性質(zhì).(2)由題設(shè),存在,結(jié)合已知得且,則,由性質(zhì)的定義只需保證為整數(shù)即可確定公差的所有可能值;(3)根據(jù)(2)的思路,可得且,由為整數(shù),在為定值只需為整數(shù),即可判斷數(shù)列的個數(shù)是否有限.【小問1詳解】由,對任意正整數(shù),,說明仍為數(shù)列中的項,∴數(shù)列具有性質(zhì).【小問2詳解】設(shè)的公差為.由條件知:,則,即,∴必有且,則,而此時對任意正整數(shù),,又必一奇一偶,即為非負(fù)整數(shù)因此,只要為整數(shù)且,那么為中的一項.易知:可取,對應(yīng)得到個滿足條件的等差數(shù)列.【小問3詳解】同(2)知:,則,∴必有且,則,故任意給定,公差均為有限個,∴具有性質(zhì)的數(shù)列是有限個.【點睛】關(guān)鍵點點睛:根據(jù)性質(zhì)的定義,在第2、3問中判斷滿足等差數(shù)列通項公式,結(jié)合各項均為整數(shù),判斷公差的個數(shù)是否有限即可.21、(1)平均數(shù)和中位數(shù)都為260件;(2)在的件數(shù)為,在的件數(shù)為.【解析】(1)由每組頻率乘以組中值相加即可得平均數(shù),設(shè)中位數(shù)為,由落在區(qū)間內(nèi)的頻率為0.5可得結(jié)果;(2)先得頻率分別為0.1,0.5,由分層抽樣的概念即可得結(jié)果.【詳解】(1)每天包裹數(shù)量的平均數(shù)為;設(shè)中位數(shù)為,易知,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度文化創(chuàng)意產(chǎn)業(yè)投資合作協(xié)議2篇
- 2025年產(chǎn)權(quán)車位買賣及車位增值服務(wù)與物業(yè)管理合同4篇
- 個人居間服務(wù)合同模板:房產(chǎn)交易中介合同版
- 2024年環(huán)保型廢紙買賣合同
- 2024版醫(yī)療設(shè)備采購合同
- 2025年度環(huán)保材料銷售代理合同模板4篇
- 中英雙語2024年土地租賃協(xié)議模板版B版
- 2025年度現(xiàn)代服務(wù)業(yè)場承包經(jīng)營合同樣本3篇
- 個人借款擔(dān)保責(zé)任合同范本2024版B版
- 2025年度征收拆遷安置房買賣合同范本(含安置補償與產(chǎn)權(quán)過戶)4篇
- 2023年湖北省武漢市高考數(shù)學(xué)一模試卷及答案解析
- 城市軌道交通的網(wǎng)絡(luò)安全與數(shù)據(jù)保護(hù)
- 英國足球文化課件
- 《行政職業(yè)能力測驗》2023年公務(wù)員考試新疆維吾爾新疆生產(chǎn)建設(shè)兵團可克達(dá)拉市預(yù)測試題含解析
- 醫(yī)院投訴案例分析及處理要點
- 燙傷的安全知識講座
- 工程變更、工程量簽證、結(jié)算以及零星項目預(yù)算程序?qū)嵤┘?xì)則(試行)
- 練習(xí)20連加連減
- 五四制青島版數(shù)學(xué)五年級上冊期末測試題及答案(共3套)
- 員工內(nèi)部崗位調(diào)換申請表
- 商法題庫(含答案)
評論
0/150
提交評論