版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省綏化市綏棱縣林業(yè)局中學2025屆數(shù)學高二上期末復習檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的圖象的大致形狀是()A. B.C. D.2.已知集合M={0,x},N={1,2},若M∩N={2},則M∪N=()A.{0,x,1,2} B.{2,0,1,2}C.{0,1,2} D.不能確定3.在數(shù)列中,,,,則()A.2 B.C. D.14.已知平面上兩點,則下列向量是直線的方向向量是()A. B.C. D.5.方程表示的曲線是()A.一個橢圓和一條直線 B.一個橢圓和一條射線C.一條射線 D.一個橢圓6.我國古代數(shù)學名著《算法統(tǒng)宗》記有行程減等問題:三百七十八里關,初行健步不為難次日腳痛減一半,六朝才得到其關.要見每朝行里數(shù),請公仔細算相還.意為:某人步行到378里的要塞去,第一天走路強壯有力,但把腳走痛了,次日因腳痛減少了一半,他所走的路程比第一天減少了一半,以后幾天走的路程都比前一天減少一半,走了六天才到達目的地.請仔細計算他每天各走多少路程?在這個問題中,第四天所走的路程為()A.96 B.48C.24 D.127.已知,數(shù)列,,,與,,,,都是等差數(shù)列,則的值是()A. B.C. D.8.在中,,,,若該三角形有兩個解,則范圍是()A. B.C. D.9.已知點在拋物線:上,則的焦點到其準線的距離為()A. B.C.1 D.210.已知數(shù)列滿足,則()A. B.C. D.11.若,則()A.1 B.2C.4 D.812.在直三棱柱中,底面是等腰直角三角形,,點在棱上,且,則與平面所成角的正弦值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數(shù)列中,若,,則_____14.過拋物線的焦點作互相垂直的兩條直線,分別交拋物線與A,C,B,D四點,則四邊形ABCD面積的最小值為___________15.已知數(shù)列滿足,記,則______;數(shù)列的通項公式為______.16.已知隨機變量X服從正態(tài)分布,若,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是正方形,側(cè)棱底面,,是的中點,過點作交于點.求證:(1)平面;(2)平面.18.(12分)某港口船舶??康姆桨甘窍鹊较韧?,且每次只能停靠一艘船.(1)若甲乙兩艘船同時到達港口,雙方約定各派一名代表猜拳:從1,2,3,4,5中各隨機選一個數(shù),若兩數(shù)之和為奇數(shù),則甲先??浚蝗魞蓴?shù)之和為偶數(shù),則乙先停靠,這種方式對雙方是否公平?請說明理由;(2)若甲、乙兩船在一晝夜內(nèi)到達該碼頭的時刻是等可能的.如果甲船停泊時間為1h,乙船停泊時間為2h,求它們中的任意一艘都不需要等待碼頭空出的概率.19.(12分)已知函數(shù).(1)當時,討論的單調(diào)性;(2)當時,,求a的取值范圍.20.(12分)在中,角A,B,C所對的邊分別為a,b,c,且.(1)求角A的大??;(2)若,且的面積為,求的周長.21.(12分)如圖,矩形和菱形所在的平面相互垂直,,為的中點.(1)求證:平面;(2)若,求二面角的余弦值.22.(10分)如圖,在四棱錐中,平面ABCD,,,且,,.(1)求證:平面PAC;(2)已知點M是線段PD上的一點,且,當三棱錐的體積為1時,求實數(shù)的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】對A,根據(jù)當時,的值即可判斷;對B,根據(jù)函數(shù)在上的單調(diào)性即可判斷;對C,根據(jù)函數(shù)的奇偶性即可判斷;對D,根據(jù)函數(shù)在上的單調(diào)性即可判斷.【詳解】解:對A,當時,,故A錯誤;對B,的定義域為,且,故為奇函數(shù);,當時,當時,,即,又,,故存在,故在單調(diào)遞增,單調(diào)遞減,單調(diào)遞增,故B正確;對C,為奇函數(shù),故C錯誤;對D,函數(shù)在上不單調(diào),故D錯誤.故選:B.2、C【解析】集合M={0,x},N={1,2},若M∩N={2},則.所以.故選C.點睛:集合的交集即為由兩個集合的公共元素組成的集合,集合的并集即由兩集合的所有元素組成.3、A【解析】根據(jù)題中條件,逐項計算,即可得出結(jié)果.【詳解】因為,,,所以,因此.故選:A.4、D【解析】由空間向量的坐標運算和空間向量平行的坐標表示,以及直線的方向向量的定義可得選項.【詳解】解:因為兩點,則,又因為與向量平行,所以直線的方向向量是,故選:D.5、A【解析】根據(jù)題意得到或,即可求解.【詳解】由方程,可得或,即或,所以方程表示的曲線為一個橢圓或一條直線.故選:A.6、C【解析】每天所走的里程構(gòu)成公比為的等比數(shù)列,設第一天走了里,利用等比數(shù)列基本量代換,直接求解.【詳解】由題意可知:每天所走的里程構(gòu)成公比為的等比數(shù)列.第一天走了里,第4天走了.故選:C7、A【解析】根據(jù)等差數(shù)列的通項公式,分別表示出,,整理即可得答案.【詳解】數(shù)列,,,和,,,,各自都成等差數(shù)列,,,,故選:A8、D【解析】根據(jù)三角形解得個數(shù)可直接構(gòu)造不等式求得結(jié)果.【詳解】三角形有兩個解,,即.故選:D.9、B【解析】由點在拋物線上,求得參數(shù),焦點到其準線的距離即為.【詳解】由點在拋物線上,易知,,故焦點到其準線的距離為.故選:B.10、D【解析】根據(jù)給定條件求出數(shù)列的通項公式,再利用裂項相消法即可計算作答.【詳解】因,則,所以,所以.故選:D11、D【解析】由題意結(jié)合導數(shù)的運算可得,再由導數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.12、C【解析】取AC的中點M,過點M作,且使得,進而證明平面,然后判斷出是與平面所成的角,最后求出答案.【詳解】如圖,取AC的中點M,因為,則,過點M作,且使得,則四邊形BDNM是平行四邊形,所以.由題意,平面ABC,則平面ABC,而平面ABC,所以,又,所以平面,而所以平面,連接DA,NA,則是與平面所成的角.而,于是,.故選:.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)等比數(shù)列下標和性質(zhì)計算可得;【詳解】解:∵在等比數(shù)列中,,∴原式故答案為:【點睛】本題考查等比數(shù)列的性質(zhì)的應用,屬于基礎題.14、512【解析】設出直線的方程與拋物線方程聯(lián)立,結(jié)合拋物線的定義、一元二次方程根與系數(shù)的關系進行求解即可.【詳解】拋物線焦點的坐標為,由題意可知:直線存在斜率且不為零,所以設直線的斜率為,所以直線的方程為,與拋物線的方程聯(lián)立得:,設,所以,由拋物線的定義可知:,因為直線互相垂直,所以直線的斜率為,同理可得:,所以四邊形ABCD面積為:,當且僅當時取等號,即當時取等號,故答案為:51215、①.②..【解析】結(jié)合遞推公式計算出,即可求出的值;證得數(shù)列是以3為首項,2為公比的等比數(shù)列,即可求出結(jié)果.【詳解】因為,所以,,,因此,由于,又,即,所以,因此數(shù)列是以3為首項,2為公比的等比數(shù)列,則,即,故答案為:;.16、##25【解析】根據(jù)正態(tài)分布曲線的對稱性即可求得結(jié)果.【詳解】,,又,,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié)、,交于點,連結(jié),通過即可證明;(2)通過,
可證平面,即得,進而通過平面得,結(jié)合即證.詳解】證明:(1)連結(jié)、,交于點,連結(jié),底面正方形,∴是中點,點是的中點,.平面,
平面,∴平面.(2),點是的中點,.底面是正方形,側(cè)棱底面,∴,
,且
,∴平面,∴,又,∴平面,∴,,,平面.【點睛】本題考查線面平行和線面垂直的證明,屬于基礎題.18、(1)不公平,理由見解析.(2)【解析】(1)通過計算概率來進行判斷.(2)利用幾何概型計算出所求概率.【小問1詳解】兩數(shù)之和為奇數(shù)的概率為,兩數(shù)之和為偶數(shù)的概率為,兩個概率不相等,所以不公平.【小問2詳解】設甲到的時刻為,乙到的時刻為,則,若它們中的任意一艘都不需要等待碼頭空出,則或,畫出可行域如下圖陰影部分所示,所以所求的概率為:.19、(1)在上單調(diào)遞減,在上單調(diào)遞增(2)【解析】(1)研究當時的導數(shù)的符號即可討論得到的單調(diào)性;(2)對原函數(shù)求導,對a的范圍分類討論即可得出答案.【小問1詳解】當時,,令,則,所以在上單調(diào)遞增.又因為,所以當時,,當時,,所以在上單調(diào)遞減,在上單調(diào)遞增.【小問2詳解】,且.①當時,由(1)可知當時,所以在上單調(diào)遞增,則,符合題意.②當時,,不符合題意,舍去.③當時,令,則,則,,當時,,所以在上單調(diào)遞減,當時,,不符合題意,舍去.綜上,a的取值范圍為.【點睛】導數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應用20、(1)(2)【解析】(1)由,根據(jù)正弦定理化簡得,利用余弦定理求得,即可求解;(2)由的面積,求得,結(jié)合余弦定理,求得,即可求解.【小問1詳解】解:因為,所以.由正弦定理得,可得,所以,因為,所以.【小問2詳解】解:由的面積,所以.由余弦定理得,所以,所以,所以的周長為.21、(1)證明見解析;(2).【解析】(1)利用面面垂直和線面垂直的性質(zhì)定理可證得;由菱形邊長和角度的關系可證得;利用線面垂直的判定定理可證得結(jié)論;(2)以為坐標原點建立起空間直角坐標系,利用空間向量法可求得二面角的余弦值.詳解】(1)平面平面,平面平面,且平面,平面,平面,,四邊形為菱形且為中點,,又,,又,,平面,,平面.(2)以為坐標原點可建立如下圖所示的空間直角坐標系,設,則,,,,,,則,,,設平面的法向量,則,令,則,,,設平面的法向量,則,令,則,,,,二面角為鈍二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面垂直關系的證明、空間向量法求解二面角的問題;涉及到面面垂直的性質(zhì)定理、線面垂直的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年08月中信銀行總行執(zhí)行監(jiān)控崗招聘筆試歷年參考題庫附帶答案詳解
- 2024年08月東莞銀行佛山分行招聘筆試歷年參考題庫附帶答案詳解
- 2025年度互聯(lián)網(wǎng)平臺用戶數(shù)據(jù)安全保護合同2篇
- 2024年03月北京中國工商銀行業(yè)務研發(fā)中心春季校園招考筆試歷年參考題庫附帶答案詳解
- 2024酒店節(jié)能改造工程承包合同
- 黃石2024-2025年度湖北黃石市教育局直屬高中公費師范畢業(yè)生招聘8人筆試歷年參考題庫附帶答案詳解
- 2025年家用空調(diào)制造市場調(diào)研報告
- 中國保險柜行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略研究報告
- 2025年度城市公園景觀節(jié)點裝修設計合同范本4篇
- 13 我想和你們一起玩(說課稿)2023-2024學年道德與法治一年級下冊統(tǒng)編版
- 2025年病案編碼員資格證試題庫(含答案)
- 企業(yè)財務三年戰(zhàn)略規(guī)劃
- 提高膿毒性休克患者1h集束化措施落實率
- 山東省濟南市天橋區(qū)2024-2025學年八年級數(shù)學上學期期中考試試題
- 主播mcn合同模板
- 新疆2024年中考數(shù)學試卷(含答案)
- 2024測繪個人年終工作總結(jié)
- DB11 637-2015 房屋結(jié)構(gòu)綜合安全性鑒定標準
- 制造業(yè)生產(chǎn)流程作業(yè)指導書
- DB34∕T 4444-2023 企業(yè)信息化系統(tǒng)上云評估服務規(guī)范
- 福建中閩能源股份有限公司招聘筆試題庫2024
評論
0/150
提交評論