版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河北省任丘一中高二數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數(shù)恰好有個不同的零點,則的取值范圍是()A. B.C. D.2.劉老師在課堂中與學(xué)生探究某個圓時,有四位同學(xué)分別給出了一個結(jié)論.甲:該圓經(jīng)過點.乙:該圓半徑為.丙:該圓的圓心為.?。涸搱A經(jīng)過點,如果只有一位同學(xué)的結(jié)論是錯誤的,那么這位同學(xué)是()A.甲 B.乙C.丙 D.丁3.已知函數(shù),在上隨機取一個實數(shù),則使得成立的概率為()A. B.C. D.4.經(jīng)過點且與雙曲線有共同漸近線的雙曲線方程為()A. B.C. D.5.橢圓的()A.焦點在x軸上,長軸長為2 B.焦點在y軸上,長軸長為2C.焦點在x軸上,長軸長為 D.焦點在y軸上,長軸長為6.直線與圓的位置關(guān)系是()A.相交 B.相切C.相離 D.相交或相切7.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.508.在某次賽車中,名參賽選手的成績(單位:)全部介于到之間(包括和),將比賽成績分為五組:第一組,第二組,···,第五組,其頻率分布直方圖如圖所示.若成績在內(nèi)的選手可獲獎,則這名選手中獲獎的人數(shù)為A. B.C. D.9.若,則()A.22 B.19C.-20 D.-1910.設(shè)等比數(shù)列的前項和為,且,則()A. B.C. D.11.已知點,則滿足點到直線的距離為,點到直線距離為的直線的條數(shù)有()A.1 B.2C.3 D.412.2021年7月,某文學(xué)網(wǎng)站對該網(wǎng)站的數(shù)字媒體內(nèi)容能否滿足讀者需要進行了調(diào)查,調(diào)查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學(xué)生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設(shè)命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應(yīng)抽取人;命題:樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知命題:,總有.則為______14.已知曲線在點處的切線與曲線相切,則______.15.已知雙曲線的漸近線上兩點A,B的中點坐標為(2,2),則直線AB的斜率是_________.16.已知空間向量,,若,則______三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線的焦點為,點在拋物線上,且點的縱坐標為4,(1)求拋物線的方程;(2)過點作直線交拋物線于兩點,試問拋物線上是否存在定點使得直線與的斜率互為倒數(shù)?若存在求出點的坐標,若不存在說明理由18.(12分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數(shù)的取值范圍.19.(12分)已知直線,圓.(1)若l與圓C相切,求切點坐標;(2)若l與圓C交于A,B,且,求的面積.20.(12分)已知橢圓的焦距為4,點在G上.(1)求橢圓G的方程;(2)過橢圓G右焦點的直線l與橢圓G交于M,N兩點,O為坐標原點,若,求直線l的方程.21.(12分)已知拋物線上的點M(5,m)到焦點F的距離為6.(1)求拋物線C的方程;(2)過點作直線l交拋物線C于A,B兩點,且點P是線段AB的中點,求直線l方程.22.(10分)已知直線和的交點為P,求:(1)過點P且與直線垂直的直線l的方程;(2)以點P為圓心,且與直線相交所得弦長為12的圓的方程;(3)從下面①②兩個問題中選一個作答,①若直線l過點,且與兩坐標軸的正半軸所圍成的三角形面積為,求直線l的方程②求圓心在直線上,與x軸相切,被直線截得的弦長的圓的方程注:如果選擇兩個問題分別作答,按第一個計分
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】分析可知,直線與函數(shù)的圖象有個交點,利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性與極值,數(shù)形結(jié)合可求得實數(shù)的取值范圍.【詳解】令,可得,構(gòu)造函數(shù),其中,由題意可知,直線與函數(shù)的圖象有個交點,,由,可得或,列表如下:增極大值減極小值增所以,,,作出直線與函數(shù)的圖象如下圖所示:由圖可知,當(dāng)時,即當(dāng)時,直線與函數(shù)的圖象有個交點,即函數(shù)有個零點.故選:D.2、D【解析】分別假設(shè)甲、乙、丙、丁是錯誤的,看能否推出矛盾,進而推導(dǎo)出答案.【詳解】假設(shè)甲的結(jié)論錯誤,根據(jù)丙和丁的結(jié)論,該圓的半徑為6,與乙的結(jié)論矛盾;假設(shè)乙的結(jié)論錯誤,圓心到點的距離與圓心到點的距離不相等,不成立;假設(shè)丙的結(jié)論錯誤﹐點到點的距離大于,不成立;假設(shè)丁的結(jié)論錯誤,圓心到點的距離等于,成立.故選:D3、B【解析】首先求不等式的解集,再根據(jù)區(qū)間長度,求幾何概型的概率.【詳解】由,得,解得,在區(qū)間上隨機取一實數(shù),則實數(shù)滿足不等式的概率為故選:B4、C【解析】共漸近線的雙曲線方程,設(shè),把點代入方程解得參數(shù)即可.【詳解】設(shè),把點代入方程解得參數(shù),所以化簡得方程故選:C.5、B【解析】把橢圓方程化為標準方程可判斷焦點位置和求出長軸長.【詳解】橢圓化為標準方程為,所以,且,所以橢圓焦點在軸上,,長軸長為.故選:B.6、A【解析】由直線恒過定點,且定點圓內(nèi),從而即可判斷直線與圓相交.【詳解】解:因為直線恒過定點,而,所以定點在圓內(nèi),所以直線與圓相交,故選:A.7、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A8、A【解析】先根據(jù)頻率分布直方圖確定成績在內(nèi)的頻率,進而可求出結(jié)果.【詳解】由題意可得:成績在內(nèi)的頻率為,又本次賽車中,共名參賽選手,所以,這名選手中獲獎的人數(shù)為.故選A【點睛】本題主要考查頻率分布直方圖,會根據(jù)頻率分布直方圖求頻率即可,屬于常考題型.9、C【解析】將所求進行變形可得,根據(jù)二項式定理展開式,即可求得答案.【詳解】由題意得所以.故選:C10、C【解析】根據(jù)給定條件求出等比數(shù)列公比q的關(guān)系,再利用前n項和公式計算得解.【詳解】設(shè)等比數(shù)列的的公比為q,由得:,解得,所以.故選:C11、D【解析】以為圓心,為半徑,為圓心,為半徑分別畫圓,將所求轉(zhuǎn)化為求圓與圓的公切線條數(shù),判斷兩圓的位置關(guān)系,從而得公切線條數(shù).【詳解】以為圓心,為半徑,為圓心,為半徑分別畫圓,如圖所示,由題意,滿足點到直線的距離為,點到直線距離為的直線的條數(shù)即為圓與圓的公切線條數(shù),因為,所以兩圓外離,所以兩圓的公切線有4條,即滿足條件的直線有4條.故選:D【點睛】解答本題的關(guān)鍵是將滿足點到直線的距離為,點到直線距離為的直線的條數(shù)轉(zhuǎn)化為圓與圓的公切線條數(shù),從而根據(jù)圓與圓的位置關(guān)系判斷出公切線條數(shù).12、A【解析】由抽樣比再乘以可得退休族應(yīng)抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內(nèi)容滿意程度的平均分,由方差公式計算方差可判斷,再由復(fù)合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應(yīng)抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:二、填空題:本題共4小題,每小題5分,共20分。13、,使得【解析】全稱命題改否定,首先把全稱量詞改成特稱量詞,然后把后面結(jié)論改否定即可.【詳解】解:因為命題,總有,所以的否定為:,使得故答案為,使得【點睛】本題考查了全稱命題的否定,全稱命題(特稱命題)改否定,首先把全稱量詞(特稱量詞)改成特稱量詞(全稱量詞),然后把后面結(jié)論改否定即可.14、2或10【解析】求出在處的導(dǎo)數(shù),得出切線方程,與聯(lián)立,利用可求.【詳解】令,,則,,可得曲線在點處的切線方程為.聯(lián)立,得,,解得或.故答案為:2或10.15、##【解析】設(shè)出直線的方程,通過聯(lián)立直線的方程和漸近線的方程,結(jié)合中點的坐標來求得直線的斜率.【詳解】雙曲線,,漸近線方程為,設(shè)直線的方程為,,由,由,所以,所以直線的斜率是.故答案為:16、7【解析】根據(jù)題意,結(jié)合空間向量的坐標運算,即可求解.【詳解】根據(jù)題意,易知,因為,所以,即,解得故答案為:7三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)存在,【解析】(1)利用拋物線的焦半徑公式求得點的橫坐標,進而求得p,可得答案;(2)根據(jù)題意可設(shè)直線方程,和拋物線方程聯(lián)立,得到根與系數(shù)的關(guān)系式,利用直線與的斜率互為倒數(shù)列出等式,化簡可得結(jié)論.【小問1詳解】(1)則,,,,故C的方程為:;【小問2詳解】假設(shè)存在定點,使得直線與的斜率互為倒數(shù),由題意可知,直線AB的斜率存在,且不為零,,,,,所以Δ>0y1+即或,,,則,,使得直線與的斜率互為倒數(shù).18、(1)(2)【解析】(1)運用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關(guān)系、以及向量數(shù)量積的坐標表示進行求解即可.【小問1詳解】依題意得,點,滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設(shè),,,,,,當(dāng)時,,此時A,B關(guān)于y軸對稱,則重心為,由得:,則,此時與橢圓不會有兩交點,故不合題意,故;聯(lián)立與橢圓方程,可得,可得,化為,,,①,設(shè)的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,則,,令,則,可得,,,.【點睛】本題主要考查橢圓的方程以及直線和橢圓的位置關(guān)系的應(yīng)用,利用消元法轉(zhuǎn)化為一元二次方程形式是解決本題的關(guān)鍵.19、(1)(2)【解析】(1)求出直線的定點,再由定點在圓上得出切點坐標;(2)由(1)知,證明為直角三角形,求出,,最后由三角形的面積公式求出的面積.【詳解】(1)圓可化為直線可化為,由解得即直線過定點,由于,則點在圓上因為l與圓C相切,所以切點坐標為(2)因為l與圓C交于A,B,所以點如下圖所示,與相交于點,由以及圓的對稱性可知,點為的中點,且由,則直線的方程為圓心到直線的距離為,即直線與圓相切即,則因為,所以【點睛】關(guān)鍵點睛:在第一問中,關(guān)鍵是先確定直線過定點,再由定點在圓上,從而確定切點的坐標.20、(1);(2).【解析】(1)根據(jù)已知求出即得橢圓的方程;(2)設(shè)l的方程為,,,聯(lián)立直線和橢圓的方程得到韋達定理,根據(jù)得到,即得直線l的方程.【小問1詳解】解:橢圓的焦距是4,所以焦點坐標是,.因為點在G上,所以,所以,.所以橢圓G的方程是.【小問2詳解】解:顯然直線l不垂直于x軸,可設(shè)l的方程為,,,將直線l的方程代入橢圓G的方程,得,則,.因為,所以,則,即,由,得,.所以,解得,即,所以直線l的方程為.21、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫出拋物線方程.(2)由題意設(shè),聯(lián)立拋物線方程,結(jié)合韋達定理、中點坐標求參數(shù)k,即可得直線l方程【小問1詳解】由題設(shè),拋物線準線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設(shè),直線l的斜率存在且不為0,設(shè)聯(lián)立方程,得,整理得,則.又P是線段AB的中點,∴,即故l22、(1)(2)(3)答案見解析【解析】(1)聯(lián)立方程組求得交點的坐標,結(jié)合直線與直線垂直,求得直線的斜率為,利用直線的點斜式,即可求解;(2)先求得點到直線的距離為,由圓的的垂徑定理列出方程求得圓的半徑,即可求解;(3)若選①:設(shè)直線l的的斜率為,得到,結(jié)合題意列出方程,求得的值,即可求解;若選②,設(shè)所求圓的圓心為,半徑為,得到,利用圓的垂徑定理列出方程求得的值,即可求解.【小問1詳解】解:由直線和的交點為P,聯(lián)立方程組,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 職業(yè)學(xué)院學(xué)生晚出、晚歸、不歸管理辦法
- 2025年度綠色生態(tài)園承建及景觀裝修合作協(xié)議3篇
- 2024年計件工作制職工聘用協(xié)議版B版
- 2025年度電商平臺短信催收合作協(xié)議范本3篇
- 2024年版公司員工通勤巴士租賃協(xié)議版B版
- 2024年贍養(yǎng)老年人義務(wù)合同示例一
- 人教版小學(xué)六年級數(shù)學(xué)上冊第二單元《位置與方向(二)》及練習(xí)五課件
- 中國特色社會主義理論與實踐研究(湖大簡答題)
- 學(xué)校傳染病和突發(fā)公共衛(wèi)生事件處理流程圖
- 2024年檢驗類之臨床醫(yī)學(xué)檢驗技術(shù)(師)通關(guān)試題庫(有答案)
- 2023全球信息技術(shù)報告
- 部編版人教版五年級上冊《道德與法治》全冊教案-教學(xué)反思(新教材)
- 殯葬各領(lǐng)域知識點總結(jié)匯總
- 叉車維修檢驗原始記錄
- Invoice商業(yè)發(fā)票模板
- 業(yè)務(wù)下單流程標準規(guī)范
- “家園”協(xié)力小班幼兒勞動教育的實踐研究 論文
- 科學(xué)版二年級《游戲迎面接力跑》評課稿
- 信訪事項復(fù)查申請書
- 巡檢記錄表巡檢記錄表
- 小學(xué)生家長教育焦慮調(diào)查問卷
評論
0/150
提交評論