版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆寧夏回族自治區(qū)育才中學(xué)高二數(shù)學(xué)第一學(xué)期期末綜合測(cè)試模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過點(diǎn)且垂直于直線的直線方程是()A. B.C. D.2.若數(shù)列{an}滿足……,則稱數(shù)列{an}為“半差遞增”數(shù)列.已知“半差遞增”數(shù)列{cn}的前n項(xiàng)和Sn滿足,則實(shí)數(shù)t的取值范圍是()A. B.(-∞,1)C. D.(1,+∞)3.已知等比數(shù)列中,,,則公比()A. B.C. D.4.下列函數(shù)求導(dǎo)錯(cuò)誤的是()A.B.C.D.5.我國的刺繡有著悠久的歷史,如圖,(1)(2)(3)(4)為刺繡最簡(jiǎn)單的四個(gè)圖案,這些圖案都是由小正方形構(gòu)成,小正方形個(gè)數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設(shè)第個(gè)圖形包含個(gè)小正方形,則的表達(dá)式為()A. B.C. D.6.已知,且,則實(shí)數(shù)的值為()A. B.3C.4 D.67.已知等比數(shù)列的前項(xiàng)和為,若,,則()A.20 B.30C.40 D.508.已知雙曲線(,)的左、右焦點(diǎn)分別為,,點(diǎn)A的坐標(biāo)為,點(diǎn)P是雙曲線在第二象限的部分上一點(diǎn),且,點(diǎn)Q是線段的中點(diǎn),且,Q關(guān)于直線PA對(duì)稱,則雙曲線的離心率為()A.3 B.2C. D.9.從編號(hào)為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進(jìn)行質(zhì)檢,若所抽樣本中含有編號(hào)66的商品,則下列編號(hào)一定被抽到的是()A.111 B.52C.37 D.810.一直線過點(diǎn),則此直線的傾斜角為()A.45° B.135°C.-45° D.-135°11.已知滿約束條件,則的最大值為()A.0 B.1C.2 D.312.在等差數(shù)列中,,則()A.9 B.6C.3 D.1二、填空題:本題共4小題,每小題5分,共20分。13.點(diǎn)P(8,1)平分橢圓x2+4y2=4的一條弦,則這條弦所在直線的方程是_______.14.分別過橢圓的左、右焦點(diǎn)、作兩條互相垂直的直線、,它們的交點(diǎn)在橢圓的內(nèi)部,則橢圓的離心率的取值范圍是________15.已知不等式有且只有兩個(gè)整數(shù)解,則實(shí)數(shù)a的范圍為___________16.從甲、乙、丙、丁4位同學(xué)中,選出2位同學(xué)分別擔(dān)任正、副班長(zhǎng)的選法數(shù)可以用表示為____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購狂歡節(jié),某電子商務(wù)平臺(tái)對(duì)某市的網(wǎng)民在今年“雙十一”的網(wǎng)購情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖1所示:(1)利用圖1,求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);(2)把下表中空格里的數(shù)填上,能否有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān).男女合計(jì)30合計(jì)45附表:P(χ2≥k0)0.100.050.012.7063.8416.635參考公式:χ2=.18.(12分)已知拋物線過點(diǎn).(1)求拋物線方程;(2)若直線與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),且,求證:過定點(diǎn).19.(12分)在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大??;(2)若b=4,△ABC的面積為,求a+c的值20.(12分)如圖1,四邊形為直角梯形,,,,,為上一點(diǎn),為的中點(diǎn),且,,現(xiàn)將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面.(2)能否在邊上找到一點(diǎn)(端點(diǎn)除外)使平面與平面所成角的余弦值為?若存在,試確定點(diǎn)的位置,若不存在,請(qǐng)說明理由.21.(12分)已知雙曲線的左、右焦點(diǎn)分別為,,動(dòng)點(diǎn)M滿足(1)求動(dòng)點(diǎn)M的軌跡方程;(2)若動(dòng)點(diǎn)M在雙曲線C上,設(shè)雙曲線C的左支上有兩個(gè)不同的點(diǎn)P,Q,點(diǎn),且,直線NQ與雙曲線C交于另一點(diǎn)B.證明:動(dòng)直線PB經(jīng)過定點(diǎn)22.(10分)已知等比數(shù)列滿足,.(1)求數(shù)列的前8項(xiàng)和;(2)求數(shù)列的前項(xiàng)積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】根據(jù)所求直線垂直于直線,設(shè)其方程為,然后將點(diǎn)代入求解.【詳解】因?yàn)樗笾本€垂直于直線,所以設(shè)其方程為,又因?yàn)橹本€過點(diǎn),所以,解得所以直線方程為:,故選:A.2、A【解析】根據(jù),利用遞推公式求得數(shù)列的通項(xiàng)公式.再根據(jù)新定義的意義,代入解不等式即可求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)樗援?dāng)時(shí),兩式相減可得,即,所以數(shù)列是以公比的等比數(shù)列當(dāng)時(shí),所以,則由“差半遞增”數(shù)列的定義可知化簡(jiǎn)可得解不等式可得即實(shí)數(shù)的取值范圍為故選:A.3、C【解析】利用等比中項(xiàng)的性質(zhì)可求得的值,再由可求得結(jié)果.【詳解】由等比中項(xiàng)的性質(zhì)可得,解得,又,,故選:C.4、C【解析】每一個(gè)選項(xiàng)根據(jù)求導(dǎo)公式及法則來運(yùn)算即可判斷.【詳解】對(duì)于A,,正確;對(duì)于B,,正確;對(duì)于C,,不正確;對(duì)于D,,正確.故選:C5、D【解析】先分別觀察給出正方體的個(gè)數(shù)為:1,,,,總結(jié)一般性的規(guī)律,將一般性的數(shù)列轉(zhuǎn)化為特殊的數(shù)列再求解【詳解】解:根據(jù)前面四個(gè)發(fā)現(xiàn)規(guī)律:,,,,,累加得:,,故選:【點(diǎn)睛】本題主要考查了歸納推理,屬于中檔題6、B【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計(jì)算作答.詳解】因,且,則有,解得,所以實(shí)數(shù)的值為3.故選:B7、B【解析】根據(jù)等比數(shù)列前項(xiàng)和的性質(zhì)進(jìn)行求解即可.【詳解】因?yàn)槭堑缺葦?shù)列,所以成等比數(shù)列,即成等比數(shù)列,顯然,故選:B8、C【解析】由角平分線的性質(zhì)可得,結(jié)合已知條件即可求雙曲線的離心率.【詳解】由題設(shè),易知:,由知:,即,整理得:.故選:C9、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因?yàn)楹芯幪?hào)66的商品被抽到,故其他能被抽到的是,當(dāng)時(shí),,其他三個(gè)選項(xiàng)均不合要求,故選:A10、A【解析】根據(jù)斜率公式求得直線的斜率,得到,即可求解.【詳解】設(shè)直線的傾斜角為,由斜率公式,可得,即,因?yàn)?,所以,即此直線的傾斜角為.故選:A.11、B【解析】作出給定不等式表示的平面區(qū)域,再借助幾何意義即可求出的最大值.【詳解】畫出不等式組表示的平面區(qū)域,如圖中陰影,其中,,目標(biāo)函數(shù),即表示斜率為2,縱截距為的平行直線系,作出直線,平移直線到直線,使其過點(diǎn)A時(shí),的縱截距最小,最大,則,所以的最大值為1.故選:B12、A【解析】直接由等差中項(xiàng)得到結(jié)果.詳解】由得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】結(jié)合點(diǎn)差法求得正確答案.【詳解】橢圓方程可化為,設(shè)是橢圓上的點(diǎn),是弦的中點(diǎn),則,兩式相減并化簡(jiǎn)得,即,所以弦所在直線方程為,即.故答案為:14、【解析】根據(jù)條件可知以為直徑的圓在橢圓的內(nèi)部,可得,再根據(jù),即可求得離心率的取值范圍.【詳解】根據(jù)條件可知,以為直徑的圓與橢圓沒有交點(diǎn),即,即,,即.故填:.【點(diǎn)睛】本題考查橢圓離心率的取值范圍,求橢圓離心率是??碱}型,涉及的方法包含1.根據(jù)直接求,2.根據(jù)條件建立關(guān)于的齊次方程求解,3.根據(jù)幾何關(guān)系找到的等量關(guān)系求解.15、【解析】參變分離后研究函數(shù)單調(diào)性及極值,結(jié)合與相鄰的整數(shù)點(diǎn)的函數(shù)值大小關(guān)系求出實(shí)數(shù)a的范圍.【詳解】整理為:,即函數(shù)在上方及線上存在兩個(gè)整數(shù)點(diǎn),,故顯然在上單調(diào)遞增,在上單調(diào)遞減,且與相鄰的整數(shù)點(diǎn)的函數(shù)值為:,,,,顯然有,要恰有兩個(gè)整數(shù)點(diǎn),則為0和1,此時(shí),解得:,如圖故答案為:16、【解析】由題意知:從4為同學(xué)中選出2位進(jìn)行排列,即可寫出表示方式.【詳解】1、從4位同學(xué)選出2位同學(xué),2、把所選出的2位同學(xué)任意安排為正、副班長(zhǎng),∴選法數(shù)為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)列聯(lián)表見解析,沒有【解析】(1)根據(jù)平均數(shù)的定義求平均數(shù),由于前2組的頻率和恰好為,從而可求出中位數(shù),(2)根據(jù)頻率分布表結(jié)合已知的數(shù)據(jù)計(jì)算完成列聯(lián)表,然后計(jì)算χ2公式計(jì)算χ2,再根據(jù)臨界值表比較可得結(jié)論【小問1詳解】以每組的中間值代表本組的消費(fèi)金額,則網(wǎng)民消費(fèi)金額的平均值為0.頻率直方圖中第一組、第二組的頻率之和為,中位數(shù);【小問2詳解】把下表中空格里的數(shù)填上,得列聯(lián)表如下;男女合計(jì)252550203050合計(jì)4555100計(jì)算,所以沒有的把握認(rèn)為網(wǎng)購消費(fèi)與性別有關(guān).18、(1);(2)證明見解析.【解析】(1)運(yùn)用代入法直接求解即可;(2)設(shè)出直線的方程與拋物線方程聯(lián)立,結(jié)合一元二次方程根與系數(shù)關(guān)系、平面向量數(shù)量積的坐標(biāo)表示公式進(jìn)行求解即可.【小問1詳解】由已知可得:;【小問2詳解】的斜率不為設(shè),,∴OA→?因?yàn)橹本€與拋物線交于兩點(diǎn)兩點(diǎn)在軸的兩側(cè),所以,即過定點(diǎn).【點(diǎn)睛】關(guān)鍵點(diǎn)睛:運(yùn)用一元二次方程根與系數(shù)關(guān)系是解題的關(guān)鍵.19、(1)(2)【解析】(1)利用正弦定理化簡(jiǎn),通過兩角和與差的三角函數(shù)求出,即可得到結(jié)果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因?yàn)閎cosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點(diǎn)睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關(guān)三角形的題目時(shí),要有意識(shí)地考慮用哪個(gè)定理更合適,或是兩個(gè)定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時(shí),要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時(shí),則考慮用正弦定理;以上特征都不明顯時(shí),則要考慮兩個(gè)定理都有可能用到20、(1)證明見解析.(2)存在點(diǎn),為線段中點(diǎn)【解析】(1)根據(jù)線面垂直的判定定理和面面垂直的判定定理,即可證得平面平面;(2)以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)在直角梯形中,作于于,連接,則,,則,,則,在直角中,可得,則,所以,故,且折疊后與位置關(guān)系不變.又因?yàn)槠矫嫫矫?,且平面平面,所以平面,因?yàn)槠矫?,所以平面平?(2)在中,由,為的中點(diǎn),可得.又因?yàn)槠矫嫫矫妫移矫嫫矫?,所以平面,則以為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系,則,,,則,,設(shè)平面的法向量為,則,令,可得平面的法向量為,假設(shè)存在點(diǎn)使平面與平面所成角的余弦值為,且(),∵,∴,故,又,∴,又由,設(shè)平面的法向量為,可得,令得,∴,解得,因此存在點(diǎn)且為線段中點(diǎn)時(shí)使平面與平面所成角的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解及應(yīng)用,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.21、(1)(2)證明見解析【解析】(1)根據(jù)雙曲線的定義求得的值得雙曲線方程;(2)確定垂直于軸,設(shè)直線BP的方程為,設(shè),,則,直線方程代入雙曲線方程,由相交求得范圍,由韋達(dá)定理,利用N、B、Q三點(diǎn)共線,且NQ斜率存在,由斜率相等得出的關(guān)系,代入韋達(dá)定理的結(jié)論可求得的值,從而得直線BP所過定點(diǎn)【小問1詳解】因?yàn)椋?,?dòng)點(diǎn)M的軌跡是以點(diǎn)、為左、右焦點(diǎn)的雙曲線的左支,則,可得,,所以,點(diǎn)M的軌跡方程為;【小問2詳解】證明:∵,∴直線PQ垂直于x軸,易知,直線BP的斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 寒假自習(xí)課 25春初中地理八年級(jí)下冊(cè)人教版教學(xué)課件 第七章 第三節(jié)“東方明珠”-香港和澳門
- 2016年高考語文試卷(新課標(biāo)Ⅲ卷)(解析卷)
- 投資風(fēng)險(xiǎn)的識(shí)別與評(píng)估-洞察分析
- 語言規(guī)劃與社會(huì)治理-洞察分析
- 育種遺傳網(wǎng)絡(luò)分析-洞察分析
- 音頻分析技術(shù)前沿-洞察分析
- 細(xì)胞命運(yùn)決定因子-洞察分析
- 通信設(shè)備材料應(yīng)用與創(chuàng)新趨勢(shì)研究-洞察分析
- 語言學(xué)校國際化發(fā)展策略-洞察分析
- 隱私保護(hù)圖像生成-洞察分析
- (八省聯(lián)考)河南省2025年高考綜合改革適應(yīng)性演練 化學(xué)試卷(含答案)
- 2025中國電信山東青島分公司校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 2025年八省聯(lián)考高考語文作文真題及參考范文
- 新課標(biāo)(水平三)體育與健康《籃球》大單元教學(xué)計(jì)劃及配套教案(18課時(shí))
- 開題報(bào)告-鑄牢中華民族共同體意識(shí)的學(xué)校教育研究
- 計(jì)件工勞務(wù)合同范例
- 2024年公交車開通儀式講話例文(4篇)
- 2024-2025學(xué)年八年級(jí)上冊(cè)物理 第五章 透鏡以及其應(yīng)用 測(cè)試卷(含答案)
- 《中華人民共和國政府采購法》專題培訓(xùn)
- 《自理理論orem》課件
- 2024年浙江省杭州市下城區(qū)教育局所屬事業(yè)單位招聘學(xué)科拔尖人才10人歷年管理單位遴選500模擬題附帶答案詳解
評(píng)論
0/150
提交評(píng)論