廣西玉林市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁
廣西玉林市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁
廣西玉林市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁
廣西玉林市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁
廣西玉林市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣西玉林市重點(diǎn)中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的左焦點(diǎn)到其漸近線的距離是()A. B.C. D.2.若函數(shù)的導(dǎo)函數(shù)在區(qū)間上是減函數(shù),則函數(shù)在區(qū)間上的圖象可能是()A. B.C. D.3.在四面體中,,,,且,,則等于()A. B.C. D.4.設(shè)雙曲線()的焦距為12,則()A.1 B.2C.3 D.45.某地政府為落實(shí)疫情防控常態(tài)化,不定時(shí)從當(dāng)?shù)?80名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測.把這批公務(wù)員按001到780進(jìn)行編號,若054號被抽中,則下列編號也被抽中的是()A.076 B.104C.390 D.5226.①命題設(shè)“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個(gè)基底,則構(gòu)成空間的另一基底;其中正確判斷的個(gè)數(shù)是()A.1 B.2C.3 D.47.已知實(shí)數(shù),滿足約束條件則的最大值為()A.10 B.8C.4 D.208.已知點(diǎn)P(5,3,6),直線l過點(diǎn)A(2,3,1),且一個(gè)方向向量為,則點(diǎn)P到直線l的距離為()A. B.C. D.9.設(shè)實(shí)數(shù),滿足,則的最小值為()A.5 B.6C.7 D.810.已知對任意實(shí)數(shù),有,且時(shí),則時(shí)A. B.C. D.11.如圖所示,用3種不同的顏色涂入圖中的矩形A,B,C中,要求相鄰的矩形不能使用同一種顏色,則不同的涂法有()ABCA.3種 B.6種C.12種 D.27種12.已知直線的傾斜角為,在軸上的截距為,則此直線的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的左右焦點(diǎn)分別為,過點(diǎn)的直線交雙曲線右支于A,B兩點(diǎn),若是等腰三角形,且,則的面積為___________.14.下方莖葉圖記錄了甲、乙兩組各5名學(xué)生在一次英語聽力測試中的成績(單位:分).已知甲組數(shù)據(jù)的中位數(shù)為,乙組數(shù)據(jù)的平均數(shù)為,則的值為__________15.若,則___________16.某校對全校共1800名學(xué)生進(jìn)行健康調(diào)查,選用分層抽樣法抽取一個(gè)容量為200的樣本,已知女生比男生少抽了20人,則該校的女生人數(shù)應(yīng)是__________人.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè):實(shí)數(shù)滿足,:實(shí)數(shù)滿足(1)當(dāng)時(shí),若與均為真命題,求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),若是的必要條件,求實(shí)數(shù)的取值范圍18.(12分)已知等比數(shù)列的公比,且,的等差中項(xiàng)為,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前項(xiàng)和.19.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(diǎn)(1)求與所成角的大??;(2)求與平面所成角的余弦值20.(12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).(1)證明:PB∥平面AEC(2)設(shè)二面角D-AE-C為60°,AP=1,AD=,求三棱錐E-ACD的體積21.(12分)已知函數(shù)(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù)(Ⅱ)若,,求的取值范圍22.(10分)在四棱錐中,平面,底面是邊長為2的菱形,分別為的中點(diǎn).(1)證明:平面;(2)求三棱錐的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】求出雙曲線焦點(diǎn)坐標(biāo)與漸近線方程,利用點(diǎn)到直線的距離公式可求得結(jié)果.【詳解】在雙曲線中,,,,所以,該雙曲線的左焦點(diǎn)坐標(biāo)為,漸近線方程為,即,因,該雙曲線的左焦點(diǎn)到漸近線的距離為.故選:A2、A【解析】根據(jù)導(dǎo)數(shù)概念和幾何意義判斷【詳解】由題意得,圖象上某點(diǎn)處的切線斜率隨增大而減小,滿足要求的只有A故選:A3、B【解析】根據(jù)空間向量的線性運(yùn)算即可求解.【詳解】解:由題知,故選:B.4、B【解析】根據(jù)可得關(guān)于的方程,解方程即可得答案.【詳解】因?yàn)榭苫癁?,所以,則.故選:B.【點(diǎn)睛】本題考查已知雙曲線的焦距求參數(shù)的值,考查函數(shù)與方程思想,考查運(yùn)算求解能力,屬于基礎(chǔ)題.5、D【解析】根據(jù)題意,求得組數(shù)與抽中編號的對應(yīng)關(guān)系,即可判斷和選擇.【詳解】從780名公務(wù)員中,采用系統(tǒng)抽樣的方法抽取30人做核酸檢測,故需要分為組,每組人,設(shè)第組抽中的編號為,設(shè),由題可知:,故可得,故可得.當(dāng)時(shí),.故選:.6、B【解析】利用逆否命題、含有邏輯聯(lián)結(jié)詞命題的真假性、充分和必要條件、空間基底等知識(shí)對四個(gè)判斷進(jìn)行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個(gè)真命題,②錯(cuò)誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯(cuò)誤.④,若為空間的一個(gè)基底,即不共面,若共面,則存在不全為零的,使得,故,因?yàn)闉榭臻g的一個(gè)基底,,故,矛盾,故不共面,所以構(gòu)成空間的另一基底,④正確.所以正確的判斷是個(gè).故選:B7、A【解析】根據(jù)約束條件作出可行域,再將目標(biāo)函數(shù)表示的一簇直線畫出向可行域平移即可求解.【詳解】作出可行域,如圖所示轉(zhuǎn)化為,令則,作出直線并平移使它經(jīng)過可行域點(diǎn),經(jīng)過時(shí),,解得,所以此時(shí)取得最大值,即有最大值,即故選:A.8、B【解析】根據(jù)向量和直線l的方向向量的關(guān)系即可求出點(diǎn)P到直線l的距離.【詳解】由題意,,,,,,到直線的距離為.故選:B.9、A【解析】作出不等式組的可行域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的思想求解即可.【詳解】畫出約束條件的平面區(qū)域,如下圖所示:目標(biāo)函數(shù)可以化為,函數(shù)可以看成由函數(shù)平移得到,當(dāng)直線經(jīng)過點(diǎn)時(shí),直線的截距最小,則,故選:10、B【解析】,所以是奇函數(shù),關(guān)于原點(diǎn)對稱,是偶函數(shù),關(guān)于y軸對稱,時(shí)則都是增函數(shù),由對稱性可知時(shí)遞增,遞減,所以考點(diǎn):函數(shù)奇偶性單調(diào)性11、C【解析】根據(jù)給定信息,按用色多少分成兩類,再分類計(jì)算作答.【詳解】計(jì)算不同的涂色方法數(shù)有兩類辦法:用3種顏色,每個(gè)矩形涂一種顏色,有種方法,用2色,矩形A,C涂同色,有種方法,由分類加法計(jì)數(shù)原理得(種),所以不同的涂法有12種.故選:C12、D【解析】求出直線的斜率,利用斜截式可得出直線的方程.【詳解】直線的斜率為,由題意可知,所求直線的方程為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:14、9【解析】閱讀莖葉圖,由甲組數(shù)據(jù)的中位數(shù)為可得,乙組的平均數(shù):,解得:,則:點(diǎn)睛:莖葉圖的繪制需注意:(1)“葉”的位置只有一個(gè)數(shù)字,而“莖”的位置的數(shù)字位數(shù)一般不需要統(tǒng)一;(2)重復(fù)出現(xiàn)的數(shù)據(jù)要重復(fù)記錄,不能遺漏,特別是“葉”的位置的數(shù)據(jù)15、【解析】先求出函數(shù)的導(dǎo)函數(shù),再求出,即可得出答案.【詳解】解:由,得,則,所以,所以,所以.故答案為:.16、810【解析】分析:首先確定抽取的女生人數(shù),然后由分層抽樣比即可確定女生的人數(shù).詳解:設(shè)抽取的女生人數(shù)為,則:,解得:,則抽取的女生人數(shù)為人,抽取的男生人數(shù)為人,據(jù)此可知該校女生人數(shù)應(yīng)是人.點(diǎn)睛:進(jìn)行分層抽樣的相關(guān)計(jì)算時(shí),常利用以下關(guān)系式巧解:(1);(2)總體中某兩層的個(gè)體數(shù)之比=樣本中這兩層抽取的個(gè)體數(shù)之比三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)將代入,解一元二次不等式求兩集合的交集即可求解.(2)求出:,根據(jù)題意可得轉(zhuǎn)化為集合的包含關(guān)系即可求解.【詳解】(1)當(dāng)時(shí),:,:或.因?yàn)?,中都是真命題.所以所以實(shí)數(shù)的取值范圍是;(2)當(dāng)時(shí),:,:或,所以:,因?yàn)槭堑谋匾獥l件,所以,所以,解得,所以實(shí)數(shù)的取值范圍是.18、(1);(2)【解析】(1)將題目的條件寫成的形式并求解,寫出等比等比數(shù)列通項(xiàng)公式;(2)利用錯(cuò)位相減法求和.小問1詳解】由題意可得,,∴,∵,∴,∴數(shù)列的通項(xiàng)公式為.【小問2詳解】,∴①,②,①-②可得,∴.19、(1)60°;(2).【解析】(1)建立空間直角坐標(biāo)系,利用空間向量夾角的坐標(biāo)公式即可求出異面直線所成角的余弦值,進(jìn)而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標(biāo)系,利用空間向量夾角的坐標(biāo)公式即可求出求出線面角的正弦值,進(jìn)而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則,,,,所以,,設(shè)與EF所成角的大小為,則,因?yàn)楫惷嬷本€成角的范圍是,所以與所成角的大小為60°【小問2詳解】設(shè)平面的法向量為,與平面所成角為,因?yàn)?,,所以,,所以,令,得為平面的一個(gè)法向量,又因?yàn)?,所以,所?0、【解析】(Ⅰ)連接BD交AC于O點(diǎn),連接EO,只要證明EO∥PB,即可證明PB∥平面AEC;(Ⅱ)延長AE至M連結(jié)DM,使得AM⊥DM,說明∠CMD=60°,是二面角的平面角,求出CD,即可三棱錐E-ACD的體積試題解析:(1)證明:連接BD交AC于點(diǎn)O,連接EO.因?yàn)锳BCD為矩形,所以O(shè)為BD中點(diǎn)又E為PD的中點(diǎn),所以EO∥PB.因?yàn)镋O?平面AEC,PB?平面AEC,所以PB∥平面AEC.(2)因?yàn)镻A⊥平面ABCD,ABCD為矩形,所以AB,AD,AP兩兩垂直如圖,以A為坐標(biāo)原點(diǎn),,AD,AP的方向?yàn)閤軸y軸z軸的正方向,||為單位長,建立空間直角坐標(biāo)系A(chǔ)-xyz,則D,E,=.設(shè)B(m,0,0)(m>0),則C(m,,0),=(m,,0)設(shè)n1=(x,y,z)為平面ACE的法向量,則即可取n1=.又n2=(1,0,0)為平面DAE的法向量,由題設(shè)易知|cos〈n1,n2〉|=,即=,解得m=.因?yàn)镋為PD的中點(diǎn),所以三棱錐E-ACD的高為.三棱錐E-ACD的體積V=××××=.考點(diǎn):二面角的平面角及求法;棱柱、棱錐、棱臺(tái)的體積;直線與平面平行的判定21、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數(shù)的單調(diào)性,結(jié)合極值的概念,即可求解;(Ⅱ)由不等式,轉(zhuǎn)化為當(dāng)時(shí),不等式恒成立,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(Ⅰ)由題意,函數(shù)的定義域?yàn)椋遥?dāng)時(shí),令,解得,令,解得或,故在上單調(diào)遞減,在,上單調(diào)遞增,所以有一個(gè)極值點(diǎn);當(dāng)時(shí),令,解得或,令,得,故在,上單調(diào)遞減,在上單調(diào)遞增,所以有一個(gè)極值點(diǎn);當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減,所以沒有極值點(diǎn)綜上所述,當(dāng)時(shí),有個(gè)極值點(diǎn);當(dāng)時(shí),沒有極值點(diǎn).(Ⅱ)由,即,可得,即當(dāng)時(shí),不等式恒成立,設(shè),則設(shè),則因?yàn)?,所以,所以在上單調(diào)遞增,所以,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以的取值范圍是.【點(diǎn)睛】對于利用導(dǎo)數(shù)研究不等式的恒成立問題的求解策略:1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題3、根據(jù)恒成求解參數(shù)的取值時(shí),一般涉及分類參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論