吉林省榆樹市第一高級中學2025屆高二上數學期末教學質量檢測模擬試題含解析_第1頁
吉林省榆樹市第一高級中學2025屆高二上數學期末教學質量檢測模擬試題含解析_第2頁
吉林省榆樹市第一高級中學2025屆高二上數學期末教學質量檢測模擬試題含解析_第3頁
吉林省榆樹市第一高級中學2025屆高二上數學期末教學質量檢測模擬試題含解析_第4頁
吉林省榆樹市第一高級中學2025屆高二上數學期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

吉林省榆樹市第一高級中學2025屆高二上數學期末教學質量檢測模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是圓上的兩點,是直線上一點,若存在點,,,使得,則實數的取值范圍是()A. B.C. D.2.直線過雙曲線:的右焦點,在第一、第四象限交雙曲線兩條漸近線分別于P,Q兩點,若∠OPQ=90°(O為坐標原點),則OPQ內切圓的半徑為()A. B.C.1 D.3.在試驗“甲射擊三次,觀察中靶的情況”中,事件A表示隨機事件“至少中靶1次”,事件B表示隨機事件“正好中靶2次”,事件C表示隨機事件“至多中靶2次”,事件D表示隨機事件“全部脫靶”,則()A.A與C是互斥事件 B.B與C是互斥事件C.A與D是對立事件 D.B與D是對立事件4.已知實數,,則下列不等式恒成立的是()A. B.C. D.5.已知數列{}滿足,且,若,則=()A.-8 B.-11C.8 D.116.已知函數的導數為,則等于()A.0 B.1C.2 D.47.已知等差數列中的、是函數的兩個不同的極值點,則的值為()A. B.1C.2 D.38.已知命題“”為真命題,“”為真命題,則()A.為假命題,為真命題 B.為真命題,為真命題C.為真命題,為假命題 D.為假命題,為假命題9.在中,角A,B,C所對的邊分別為a,b,c,,,則()A. B.1C.2 D.410.2013年9月7日,總書記在哈薩克斯坦納扎爾巴耶夫大學發(fā)表演講在談到環(huán)境保護問題時提出“綠水青山就是金山銀山”這一科學論新.某市為了改善當地生態(tài)環(huán)境,2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,從2021年開始每年投入資金比上一年增加10%,到2025屆底該市生態(tài)環(huán)境建設投資總額大約為()(其中,,)A.2559萬元 B.2969萬元C.3005萬元 D.3040萬元11.已知圓與圓相交于A、B兩點,則圓上的動點P到直線AB距離的最大值為()A. B.C. D.12.為了解義務教育階段學校對雙減政策的落實程度,某市教育局從全市義務教育階段學校中隨機抽取了6所學校進行問卷調查,其中有4所小學和2所初級中學,若從這6所學校中再隨機抽取兩所學校作進一步調查,則抽取的這兩所學校中恰有一所小學的概率是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設等差數列的前項和為,且,,則__________.14.正方體的棱長為2,點為底面正方形的中心,點在側面正方形的邊界及其內部運動,若,則點的軌跡的長度為______15.某幾何體的三視圖如圖所示,則該幾何體的體積為______.16.等比數列的前n項和,則的通項公式為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面,,,,,為上一點,且.請用空間向量知識解答下列問題:(1)求證:平面;(2)求平面與平面夾角的大小.18.(12分)在平面直角坐標系中,圓外的點在軸的右側運動,且到圓上的點的最小距離等于它到軸的距離,記的軌跡為(1)求的方程;(2)過點的直線交于,兩點,以為直徑的圓與平行于軸的直線相切于點,線段交于點,證明:是的中點19.(12分)三棱柱中,側面為菱形,,,,(1)求證:面面;(2)在線段上是否存在一點M,使得二面角為,若存在,求出的值,若不存在,請說明理由20.(12分)已知數列{an}是一個等差數列,且a2=1,a5=-5.(1)求{an}的通項an;(2)求{an}前n項和Sn的最大值21.(12分)已知函數(1)若在上單調遞減,求實數a的取值范圍(2)若是方程的兩個不相等的實數根,證明:22.(10分)在等比數列中,已知,(1)若,求數列的前項和;(2)若以數列中的相鄰兩項,構造雙曲線,求證:雙曲線系中所有雙曲線的漸近線、離心率都相同

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】確定在以為直徑的圓上,,根據均值不等式得到圓上的點到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設中點為,則,圓上的點到的最大距離為,,當時等號成立.直線到原點的距離為,故.故選:B.2、B【解析】根據漸近線的對稱性,結合銳角三角函數定義、正切的二倍角公式、直角三角形內切圓半徑公式進行求解即可.【詳解】由雙曲線標準方程可知:,雙曲線的漸近線方程為:,因此,因為∠OPQ=90°,所以三角形是直角三角形,,而,解得:,由雙曲線漸近線的對稱性可知:,于是有,在直角三角形中,,由勾股定理可知:,設OPQ內切圓的半徑為,于是有:,即,故選:B【點睛】關鍵點睛:利用三角形內切圓的性質是解題的關鍵.3、C【解析】根據互斥事件、對立事件的定義即可求解.【詳解】解:因為A與C,B與C可能同時發(fā)生,故選項A、B不正確;B與D不可能同時發(fā)生,但B與D不是事件的所有結果,故選項D不正確;A與D不可能同時發(fā)生,且A與D為事件的所有結果,故選項C正確故選:C.4、C【解析】根據不等式性質和作差法判斷大小依次判斷每個選項得到答案.【詳解】當時,不等式不成立,錯誤;,故錯誤正確;當時,不等式不成立,錯誤;故選:.【點睛】本題考查了不等式的性質,作差法判斷大小,意在考查學生對于不等式知識的綜合應用.5、C【解析】利用遞推關系,結合取值,求得即可.【詳解】因為,且,,故可得,解得(舍),;同理求得,,.故選:C.6、A【解析】先對函數求導,然后代值計算即可【詳解】因為,所以.故選:A7、C【解析】對求導,由題設及根與系數關系可得,再根據等差中項的性質求,最后應用對數運算求值即可.【詳解】由題設,,由、是的兩個不同的極值點,所以,又是等差數列,所以,即,故.故選:C8、A【解析】根據復合命題的真假表即可得出結果.【詳解】若“”為真命題,則為假命題,又“”為真命題,則至少有一個真命題,所以為真命題,即為假命題,為真命題.故選:A9、C【解析】直接運用正弦定理可得,解得詳解】由正弦定理,得,所以故選:C10、B【解析】前7年投入資金可看成首項為160,公差為20的等差數列,后4年投入資金可看成首項為260,公比為1.1的等比數列,分別求和,即可求出所求【詳解】2014年投入資金160萬元,以后每年投入資金比上一年增加20萬元,成等差數列,則2020年投入資金萬元,年共7年投資總額為,從2021年開始每年投入資金比上一年增加,則從2021年到2025屆投入資金成首項為,公比為1.1,項數為4的等比數列,故從2021年到2025屆投入總資金為,故到2025屆底該市生態(tài)環(huán)境建設投資總額大約為萬元故選:11、A【解析】判斷圓與的位置并求出直線AB方程,再求圓心C到直線AB距離即可計算作答.【詳解】圓的圓心,半徑,圓的圓心,半徑,,,即圓與相交,直線AB方程為:,圓的圓心,半徑,點C到直線AB距離的距離,所以圓C上的動點P到直線AB距離的最大值為.故選:A12、A【解析】由組合知識結合古典概型概率公式求解即可.【詳解】從這6所學校中隨機抽取兩所學校的情況共有種,這兩所學校中恰有一所小學的情況共有種,則其概率為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據,利用等差數列前項和公式,列方程求出,再由,能求出【詳解】等差數列的前項和為,且,,,解得,,,解得,故答案為:1014、【解析】取中點,利用線面垂直的判定方法可證得平面,由此可確定點軌跡為,再計算即可.【詳解】取中點,連接,平面,平面,,又四邊形為正方形,,又,平面,平面,又平面,;由題意得:,,,,;平面,,平面,,在側面的邊界及其內部運動,點軌跡為線段;故答案為:.15、【解析】根據三視圖還原幾何體,由此計算出幾何體的體積.【詳解】根據三視圖可知,該幾何體為如圖所示三棱錐,所以該幾何體的體積為.故答案為:16、【解析】利用的關系,結合是等比數列,即可求得結果.【詳解】因為,故當時,,則,又當時,,因為是等比數列,故也滿足,即,故,此時滿足,則.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)以為原點,、、分別為軸、軸、軸建立空間直角坐標系,證明出,,結合線面垂直的判定定理可證得結論成立;(2)利用空間向量法可求得平面與平面夾角的大小.【小問1詳解】證明:底面,,故以為原點,、、分別為軸、軸、軸建立如圖所示的空間直角坐標系,則、、、、、,所以,,,,則,,即,,又,所以,平面.【小問2詳解】解:知,,,設平面的法向量為,則,,即,令,可得,設平面的法向量為,由,,即,令,可得,,因此,平面與平面夾角的大小為.18、(1)(2)證明見解析【解析】(1)設點,求得到圓上的最小距離為,根據題意得到,整理即可求得曲線的方程;(2)當直線的斜率不存在時,顯然成立;當直線的斜率存在時,設直線的方程,聯立方程組求得和,得到,結合拋物線的定義和方程求得,,結合,即可求解.【小問1詳解】解:設點,(其中),由圓,可得圓心坐標為,因為在圓外,所以到圓上的點的最小距離為,又由到圓上的點的最小距離等于它到軸的距離,可得,即,整理得,即曲線的方程為【小問2詳解】解:當直線的斜率不存在時,可得點為拋物線的交點,點為坐標原點,點為拋物線的準線與軸的交點,顯然滿足是的中點;當直線的斜率存在時,設直線的方程,設,,,則,聯立方程組,整理得,因為,且,則,故,由拋物線的定義知,設,可得,所以,又因為,所以,解得,所以,因為在地物線上,所以,即,所以,即是的中點19、(1)證明見解析;(2)【解析】(1)取BC的中點O,連結AO、,在三角形中分別證明和,再利用勾股定理證明,結合線面垂直的判定定理可證明平面,再由面面垂直的判定定理即可證明結果.(2)建立空間直角坐標系,假設點M存在,設,求出M點坐標,然后求出平面的法向量,利用空間向量的方法根據二面角的平面角為可求出的值.【詳解】(1)取BC的中點O,連結AO,,,為等腰直角三角形,所以,;側面為菱形,,所以三角形為為等邊三角形,所以,又,所以,又,滿足,所以;因為,所以平面,因為平面中,所以平面平面.(2)由(1)問知:兩兩垂直,以O為坐標原點,為軸,為軸,為軸建立空間之間坐標系.則,,,,若存在點M,則點M在上,不妨設,則有,則,有,,設平面的法向量為,則解得:平面的法向量為則解得:或(舍)故存在點M,.【點睛】本題考查立體幾何探索是否存在的問題,屬于中檔題.方法點睛:(1)判斷是否存在的問題,一般先假設存在;(2)設出點坐標,作為已知條件,代入計算;(3)根據結果,判斷是否存在.20、(1)an=-2n+5.(2)4【解析】(Ⅰ)設{an}的公差為d,由已知條件,,解出a1=3,d=-2所以an=a1+(n-1)d=-2n+5(Ⅱ)Sn=na1+d=-n2+4n=-(n-2)2+4,所以n=2時,Sn取到最大值421、(1);(2)詳見解析【解析】(1)首先求函數的導數,結合函數的導數與函數單調性的關系,參變分離后,轉化為求函數的最值,即可求得實數的取值范圍;(2)將方程的實數根代入方程,再變形得到,利用分析法,轉化為證明,通過換元,構造函數,轉化為利用導數證明,恒成立.【小問1詳解】,,在上單調遞減,在上恒成立,即,即在,設,,,當時,,函數單調遞增,當時,,函數單調遞減,所以函數的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數根,即又2個不同實數根,且,,得,即,所以,不妨設,則,要證明,只需證明,即證明,即證明,令,,令函數,所以,所以函數在上單調遞減,當時,,所以,,所以,即,即得【點睛】本題考查利用導數的單調性求參數的取值范圍,以及證明不等式,屬

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論