版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
寧夏銀川市金鳳區(qū)六盤山高級中學(xué)2025屆數(shù)學(xué)高二上期末聯(lián)考模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓過點,,且圓心在軸上,則圓的方程是()A. B.C. D.2.在下列各圖中,每個圖的兩個變量具有相關(guān)關(guān)系的圖是()A.(1)(2) B.(1)(3)C.(2) D.(2)(3)3.函數(shù)在處有極小值5,則()A. B.C.或 D.或34.已知直線和互相平行,則實數(shù)的取值為()A或3 B.C. D.1或5.已知雙曲線,過點作直線l,若l與該雙曲線只有一個公共點,這樣的直線條數(shù)為()A.1 B.2C.3 D.46.若,則=()A.244 B.1C. D.7.阿基米德既是古希臘著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積.若橢圓的中心為原點,焦點、在軸上,橢圓的面積為,且離心率為,則的標(biāo)準(zhǔn)方程為()A. B.C. D.8.設(shè)數(shù)列、都是等差數(shù)列,若,則等于()A. B.C. D.9.已知角的終邊經(jīng)過點,則,的值分別為A., B.,C., D.,10.等差數(shù)列的前項和為,若,,則()A.12 B.18C.21 D.2711.若,則x的值為()A.4 B.6C.4或6 D.812.如圖,雙曲線的左,右焦點分別為,,過作直線與C及其漸近線分別交于Q,P兩點,且Q為的中點.若等腰三角形的底邊的長等于C的半焦距.則C的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)是定義在上的可導(dǎo)函數(shù),且滿足,則不等式解集為_______14.已知為曲線:上一點,,,則的最小值為______15.我國民間剪紙藝術(shù)在剪紙時經(jīng)常會沿紙的某條對稱軸把紙對折.現(xiàn)有一張半徑為的圓形紙,對折次可以得到兩個規(guī)格相同的圖形,將其中之一進行第次對折后,就會得到三個圖形,其中有兩個規(guī)格相同,取規(guī)格相同的兩個之一進行第次對折后,就會得到四個圖形,其中依然有兩個規(guī)格相同,以此類推,每次對折后都會有兩個圖形規(guī)格相同.如果把次對折后得到的不同規(guī)格的圖形面積和用表示,由題意知,,則________;如果對折次,則________.16.某中學(xué)高一年級有420人,高二年級有460人,高三年級有500人,用分層抽樣的方法抽取部分樣本,若從高一年級抽取21人,則從高三年級抽取的人數(shù)是__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面ABCD是矩形,點E是線段PA的中點.(1)求證:平面EBD;(2)若是等邊三角形,,平面平面ABCD,求點E到平面PDB的距離.18.(12分)已知為直角梯形,,平面,,.(1)求證:平面;(2)求平面與平面所成銳二面角的余弦值.19.(12分)已知橢圓的離心率是,且過點.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若直線與橢圓交于A、B兩點,線段的中點為,為坐標(biāo)原點,且,求面積的最大值.20.(12分)如圖,在四棱錐P-ABCD中,底面四邊形ABCD為直角梯形,,,,O為BD的中點,,(1)證明:平面ABCD;(2)求平面PAD與平面PBC所成銳二面角的余弦值21.(12分)已知函數(shù)的圖像為曲線,點、.(1)設(shè)點為曲線上在第一象限內(nèi)的任意一點,求線段的長(用表示);(2)設(shè)點為曲線上任意一點,求證:為常數(shù);(3)由(2)可知,曲線為雙曲線,請研究雙曲線的性質(zhì)(從對稱性、頂點、漸近線、離心率四個角度進行研究).22.(10分)已知數(shù)列滿足,(1)設(shè),求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的前項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據(jù)圓心在軸上,設(shè)出圓的方程,把點,的坐標(biāo)代入圓的方程即可求出答案.【詳解】因為圓的圓心在軸上,所以設(shè)圓的方程為,因為點,在圓上,所以,解得,所以圓的方程是.故選:B.2、D【解析】根據(jù)圖形可得(1)具有函數(shù)關(guān)系;(2)(3)的散點分布在一條直線或曲線附近,具有相關(guān)關(guān)系;(4)的散點雜亂無章,不具有相關(guān)關(guān)系.【詳解】對(1),所有的點都在曲線上,故具有函數(shù)關(guān)系;對(2),所有的散點分布在一條直線附近,具有相關(guān)關(guān)系;對(3),所有的散點分布在一條曲線附近,具有相關(guān)關(guān)系;對(4),所有的散點雜亂無章,不具有相關(guān)關(guān)系.故選:D.3、A【解析】由題意條件和,可建立一個關(guān)于的方程組,解出的值,然后再將帶入到中去驗證其是否滿足在處有極小值,排除增根,即可得到答案.【詳解】由題意可得,則,解得,或.當(dāng),時,.由,得;由,得.則在上單調(diào)遞增,在上單調(diào)遞減,故在處有極大值5,不符合題意.當(dāng),時,.由,得;由,得.則在上單調(diào)遞減,在上單調(diào)遞增,故在處有極小值5,符合題意,從而故選:A.4、B【解析】利用兩直線平行的等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結(jié)論,可避免討論:已知,,則,5、D【解析】先確定雙曲線的右頂點,再分垂直軸、與軸不垂直兩種情況討論,當(dāng)與軸不垂直時,可設(shè)直線方程為,聯(lián)立直線與拋物線方程,消元整理,再分、兩種情況討論,即可得解【詳解】解:根據(jù)雙曲線方程可知右頂點為,使與有且只有一個公共點情況為:①當(dāng)垂直軸時,此時過點的直線方程為,與雙曲線只有一個公共點,②當(dāng)與軸不垂直時,可設(shè)直線方程為聯(lián)立方程可得當(dāng)即時,方程只有一個根,此時直線與雙曲線只有一個公共點,當(dāng)時,,整理可得即故選:D6、D【解析】分別令代入已知關(guān)系式,再兩式求和即可求解.【詳解】根據(jù),令時,整理得:令x=2時,整理得:由①+②得,,所以.故選:D.7、A【解析】設(shè)橢圓方程為,解方程組即得解.【詳解】解:設(shè)橢圓方程為,由題意可知,橢圓的面積為,且、、均為正數(shù),即,解得,因為橢圓的焦點在軸上,所以的標(biāo)準(zhǔn)方程為.故選:A.8、A【解析】設(shè)等差數(shù)列的公差為,根據(jù)數(shù)列是等差數(shù)列可求得,由此可得出,進而可求得所求代數(shù)式的值.【詳解】設(shè)等差數(shù)列的公差為,即,由于數(shù)列也為等差數(shù)列,則,可得,即,可得,即,解得,所以,數(shù)列為常數(shù)列,對任意的,,因此,.故選:A.【點睛】關(guān)鍵點點睛:本題考查等差數(shù)列基本量的求解,通過等差數(shù)列定義列等式求解公差是解題的關(guān)鍵,另外,在求解有關(guān)等差數(shù)列基本問題時,可充分利用等差數(shù)列的定義以及等差中項法來求解.9、C【解析】利用任意角的三角函數(shù)的定義:,,,代入計算即可得到答案【詳解】由于角的終邊經(jīng)過點,則,,(為坐標(biāo)原點),所以由任意角的三角函數(shù)的定義:,.故答案選C【點睛】本題考查任意角的三角函數(shù)的定義,解決此類問題的關(guān)鍵是掌握牢記三角函數(shù)定義并能夠熟練應(yīng)用,屬于基礎(chǔ)題10、B【解析】根據(jù)等差數(shù)列的前項和為具有的性質(zhì),即成等差數(shù)列,由此列出等式,求得答案.【詳解】因為為等差數(shù)列的前n項和,且,,所以成等差數(shù)列,所以,即,解得=18,故選:B.11、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C12、C【解析】先根據(jù)等腰三角形的性質(zhì)得,再根據(jù)雙曲線定義以及勾股定理列方程,解得離心率.【詳解】連接,由為等腰三角形且Q為的中點,得,由知.由雙曲線的定義知,在中,,(負(fù)值舍去)故選:C【點睛】本題考查雙曲線的定義、雙曲線的離心率,考查基本分析求解能力,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】構(gòu)造函數(shù),結(jié)合題意求得,由此判斷出在上遞增,由此求解出不等式的解集.【詳解】令,,故函數(shù)在上單調(diào)遞增,不等式可化為,則,解得:【點睛】本小題主要考查構(gòu)造函數(shù)法解不等式,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】曲線是拋物線的右半部分,是拋物線的焦點,作出拋物線的準(zhǔn)線,把轉(zhuǎn)化為到準(zhǔn)線的距離,則到準(zhǔn)線的距離為所求距離和的最小值【詳解】易知曲線是拋物線的右半部分,如圖,因為拋物線的準(zhǔn)線方程為,是拋物線的焦點,所以等于到直線的距離.過作該直線的垂線,垂足為,則的最小值為故答案為:15、①.②.【解析】首先根據(jù)題意得到,再計算即可;根據(jù)題意得到,再利用分組求和法求和即可.【詳解】因為,,所以,所以..故答案為:;16、25【解析】由條件先求出抽樣比,從而可求出從高三年級抽取的人數(shù).【詳解】由題意抽樣比例:則從高三年級抽取的人數(shù)是人故答案為:25三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】(1)連接交于點,連接,由中位線定理結(jié)合線面平行的判定證明即可;(2)由得出點到平面的距離,再由是的中點,得出點到平面的距離.【小問1詳解】連接交于點,連接.因為分別是的中點,所以.又平面EBD,平面EBD,所以平面EBD;【小問2詳解】過點作的垂線,垂足為,連接.因為平面平面ABCD,平面平面ABCD,所以平面ABCD,所以,設(shè)點到平面的距離為因為,所以,因為點是的中點,所以點到平面的距離為.18、(1)證明見解析;(2).【解析】建立空間直角坐標(biāo)系.(1)方法一,利用向量的方法,通過計算,,證得,,由此證得平面.方法二,利用幾何法,通過平面證得,結(jié)合證得,由此證得平面.(2)通過平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】如圖,以為原點建立空間直角坐標(biāo)系,可得,,,.(1)證明法一:因為,,,所以,,所以,,,平面,平面,所以平面.證明法二:因為平面,平面,所以,又因為,即,,平面,平面,所以平面.(2)由(1)知平面的一個法向量,設(shè)平面的法向量,又,,且所以所以平面的一個法向量為,所以,所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查線面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.19、(1);(2)2.【解析】(1)根據(jù)已知條件列出關(guān)于a、b、c的方程組即可求得橢圓標(biāo)準(zhǔn)方程;(2)直線l和x軸垂直時,根據(jù)已知條件求出此時△AOB面積;直線l和x軸不垂直時,設(shè)直線方程為點斜式y(tǒng)=kx+t,代入橢圓方程得二次方程,結(jié)合韋達(dá)定理和弦長得k和t關(guān)系,表示出△AOB的面積,結(jié)合基本不等式即可求解三角形面積最值.【小問1詳解】由題知,解得,∴橢圓的標(biāo)準(zhǔn)方程為.【小問2詳解】當(dāng)軸時,位于軸上,且,由可得,此時;當(dāng)不垂直軸時,設(shè)直線的方程為,與橢圓交于,,由,得.得,,從而已知,可得.∵.設(shè)到直線的距離為,則,結(jié)合化簡得此時的面積最大,最大值為2.當(dāng)且僅當(dāng)即時取等號,綜上,的面積的最大值為2.20、(1)見解析(2)【解析】(1)連接,利用勾股定理證明,又可證明,根據(jù)線面垂直的判定定理證明即可;(2)建立合適的空間直角坐標(biāo)系,求出所需點的坐標(biāo)和向量的坐標(biāo),然后利用待定系數(shù)法求出平面和平面的法向量,由向量的夾角公式求解即可小問1詳解】證明:如圖,連接,在中,由,可得,因為,,所以,,因為,,,則,故,因為,,,平面,則平面;【小問2詳解】解:由(1)可知,,,兩兩垂直,以點為坐標(biāo)原點,建立空間直角坐標(biāo)系如圖所示,則,0,,,0,,,0,,,2,,,0,,所以,則,,,又,設(shè)平面的法向量為,則,令,則,,故,設(shè)平面的法向量為,因為,所以,令,則,,故,所以,故平面與平面所成銳二面角的余弦值為21、(1);(2)具體見解析;(3)具體見解析.【解析】(1)由兩點間的距離公式求出距離,進而將式子化簡即可;(2)求出,進而討論兩種情況,然后結(jié)合基本不等式即可證明問題;(3)根據(jù)為雙曲線的焦點,結(jié)合雙曲線的圖形特征即可求得該雙曲線的相關(guān)性質(zhì).【小問1詳解】由題意,.【小問2詳解】設(shè),由(1),.若x>0,則,當(dāng)且僅當(dāng)時取“=”,則,,所以.若x<0,則,當(dāng)且僅當(dāng)時取“=”,則,,所以.綜上:,為常數(shù).【小問3詳解】易知函數(shù):為奇函數(shù),則其圖象關(guān)于原點對稱.由(2)可知,曲線為雙曲線,為雙曲線的焦點,則它關(guān)于直線對稱,還關(guān)于與垂直且過原點的直線對稱.,則,易得.綜上:雙曲線關(guān)于原點(0,0)對稱,且關(guān)于直線對稱.容易知道,直線是雙曲線C的漸近線.易知線段是雙曲線的實軸,將代入雙曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年版簡易離婚合同:雙方同意條款版B版
- 2024混凝土合同范本
- 2024消防樓梯工程合同
- 2025年土方收購合同范本:綠色環(huán)保建材供應(yīng)鏈管理協(xié)議3篇
- 2024年特許經(jīng)營合同標(biāo)的詳細(xì)解讀
- 2024棋牌室租賃管理服務(wù)合同3篇
- 2025年協(xié)議離婚快速辦理與離婚協(xié)議書合同3篇
- 2025年度體育用品品牌贊助合同3篇
- 2024年玻璃膠專利許可使用合同
- 二零二五年婚生女離婚財產(chǎn)分割與子女撫養(yǎng)責(zé)任合同3篇
- 2024年浙江省杭州市下城區(qū)教育局所屬事業(yè)單位招聘學(xué)科拔尖人才10人歷年管理單位遴選500模擬題附帶答案詳解
- 研發(fā)項目管理培訓(xùn)課件講解
- 2024-2030年中國膏劑(膏方)行業(yè)競爭狀況及營銷前景預(yù)測報告版
- 2023虛擬電廠新型電力系統(tǒng)
- 2024醫(yī)療設(shè)備維修與保養(yǎng)合同
- 智慧環(huán)保監(jiān)測與管理平臺開發(fā)合同
- 2024年全國陸上石油天然氣開采作業(yè)考試題庫(含答案)
- JJF 2158-2024 熱量表型式評價大綱
- 汽車內(nèi)飾件及材料氣味評價標(biāo)準(zhǔn)解析
- 紡紗工藝學(xué)課程設(shè)計
- 廣東省深圳市2023-2024學(xué)年六年級上學(xué)期英語期中試卷(含答案)
評論
0/150
提交評論