遼寧省葫蘆島第六高級中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
遼寧省葫蘆島第六高級中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
遼寧省葫蘆島第六高級中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
遼寧省葫蘆島第六高級中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
遼寧省葫蘆島第六高級中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省葫蘆島第六高級中學(xué)2025屆高二上數(shù)學(xué)期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若方程表示焦點在y軸上的雙曲線,則k的取值范圍是()A. B.C. D.2.2021年7月,某文學(xué)網(wǎng)站對該網(wǎng)站的數(shù)字媒體內(nèi)容能否滿足讀者需要進行了調(diào)查,調(diào)查部門隨機抽取了名讀者,所得情況統(tǒng)計如下表所示:滿意程度學(xué)生族上班族退休族滿意一般不滿意記滿分為分,一般為分,不滿意為分.設(shè)命題:按分層抽樣方式從不滿意的讀者中抽取人,則退休族應(yīng)抽取人;命題:樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的方差為.則下列命題中為真命題的是()A. B.C. D.3.德國數(shù)學(xué)家米勒曾提出最大視角問題,這一問題一般的描述是:已知點A、B是的ON邊上的兩個定點,C是OM邊上的一個動點,當(dāng)C在何處時,最大?問題的答案是:當(dāng)且僅當(dāng)?shù)耐饨訄A與邊OM相切于點C時,最大.人們稱這一命題為米勒定理.已知點P、Q的坐標(biāo)分別是(2,0),(4,0),R是y軸正半軸上的一動點,當(dāng)最大時,點R的縱坐標(biāo)為()A.1 B.C. D.24.已知拋物線的焦點為F,,點是拋物線上的動點,則當(dāng)?shù)闹底钚r,=()A.1 B.2C. D.45.若圓與圓外切,則()A. B.C. D.6.下列直線中,與直線垂直的是()A. B.C. D.7.已知直線與拋物線C:相交于A,B兩點,O為坐標(biāo)原點,,的斜率分別為,,則()A. B.C. D.8.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.9.①命題設(shè)“,若,則或”;②若“”為真命題,則p,q均為真命題;③“”是函數(shù)為偶函數(shù)的必要不充分條件;④若為空間的一個基底,則構(gòu)成空間的另一基底;其中正確判斷的個數(shù)是()A.1 B.2C.3 D.410.設(shè)點是點,,關(guān)于平面的對稱點,則()A.10 B.C. D.3811.已知點與不重合的點A,B共線,若以A,B為圓心,2為半徑的兩圓均過點,則的取值范圍為()A. B.C. D.12.已知直線與圓相離,則以,,為邊長的三角形為()A.鈍角三角形 B.直角三角形C.銳角三角形 D.不存在二、填空題:本題共4小題,每小題5分,共20分。13.圓與圓的公共弦長為______14.直線與兩坐標(biāo)軸相交于,兩點,則線段的垂直平分線的方程為___________.15.已知等比數(shù)列滿足:,,,則公比______.16.在中,,,,則此三角形的最大邊長為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)新型冠狀病毒的傳染主要是人與人之間進行傳播,感染人群年齡大多數(shù)是歲以上人群.該病毒進入人體后有潛伏期.潛伏期是指病原體侵入人體至最早出現(xiàn)臨床癥狀的這段時間.潛伏期越長,感染到他人的可能性越高.現(xiàn)對個病例的潛伏期(單位:天)進行調(diào)查,統(tǒng)計發(fā)現(xiàn)潛伏期平均數(shù)為,方差為.如果認為超過天的潛伏期屬于“長潛伏期”,按照年齡統(tǒng)計樣本,得到下面的列聯(lián)表:年齡/人數(shù)長期潛伏非長期潛伏50歲以上6022050歲及50歲以下4080(1)是否有的把握認為“長期潛伏”與年齡有關(guān);(2)假設(shè)潛伏期服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.(i)現(xiàn)在很多省市對入境旅客一律要求隔離天,請用概率知識解釋其合理性;(ii)以題目中的樣本頻率估計概率,設(shè)個病例中恰有個屬于“長期潛伏”的概率是,當(dāng)為何值時,取得最大值.附:0.10.050.0102.7063.8416.635若,則,,.18.(12分)已知圓,圓心在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)求直線被圓截得的弦的長19.(12分)已知函數(shù).(1)求函數(shù)在處的切線方程;(2)求函數(shù)在區(qū)間上的最大值與最小值.20.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)求函數(shù)在區(qū)間上的最大值與最小值.21.(12分)已知冪函數(shù)在上單調(diào)遞減,函數(shù)的定義域為集合A(1)求m的值;(2)當(dāng)時,的值域為集合B,若是成立的充分不必要條件,求實數(shù)的取值范圍22.(10分)某公司從2020年初起生產(chǎn)某種高科技產(chǎn)品,初始投入資金為1000萬元,到年底資金增長50%.預(yù)計以后每年資金增長率與第一年相同,但每年年底公司要扣除消費資金x萬元,余下資金再投入下一年的生產(chǎn).設(shè)第n年年底扣除消費資金后的剩余資金為萬元.(1)用x表示,,并寫出與的關(guān)系式;.(2)若企業(yè)希望經(jīng)過5年后,使企業(yè)剩余資金達3000萬元,試確定每年年底扣除的消費資金x的值(精確到萬元).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由條件可得,即可得到答案.【詳解】方程表示焦點在y軸上的雙曲線所以,即故選:B2、A【解析】由抽樣比再乘以可得退休族應(yīng)抽取人數(shù)可判斷命題,求出上班族對數(shù)字媒體內(nèi)容滿意程度的平均分,由方差公式計算方差可判斷,再由復(fù)合命題的真假判斷四個選項,即可得正確選項.【詳解】因為退休族應(yīng)抽取人,所以命題正確;樣本中上班族對數(shù)字媒體內(nèi)容滿意程度的平均分為,方差為,命題正確,所以為真,、、為假命題,故選:3、C【解析】由題意,借助米勒定理,可設(shè)出坐標(biāo),表示出的外接圓方程,然后在求解點R的縱坐標(biāo).【詳解】因為點P、Q的坐標(biāo)分別是(2,0),(4,0)是x軸正半軸上的兩個定點,點R是y軸正半軸上的一動點,根據(jù)米勒定理,當(dāng)?shù)耐饨訄A與y軸相切時,最大,由垂徑定理可知,弦的垂直平分線必經(jīng)過的外接圓圓心,所以弦的中點為(3,0),故弦中點的橫坐標(biāo)即為的外接圓半徑,即,由垂徑定理可得,圓心坐標(biāo)為,故的外接圓的方程為,所以點R的縱坐標(biāo)為.故選:C.4、B【解析】根據(jù)拋物線定義,轉(zhuǎn)化,要使有最小值,只需最大,即直線與拋物線相切,聯(lián)立直線方程與拋物線方程,求出斜率,然后求出點坐標(biāo),即可求解.【詳解】由題知,拋物線的準(zhǔn)線方程為,,過P作垂直于準(zhǔn)線于,連接,由拋物線定義知.由正弦函數(shù)知,要使最小值,即最小,即最大,即直線斜率最大,即直線與拋物線相切.設(shè)所在的直線方程為:,聯(lián)立拋物線方程:,整理得:則,解得即,解得,代入得或,再利用焦半徑公式得故選:B.關(guān)鍵點睛:本題考查拋物線的性質(zhì),直線與拋物線的位置關(guān)系,解題的關(guān)鍵是要將取最小值轉(zhuǎn)化為直線斜率最大,再轉(zhuǎn)化為拋物線的切線,考查學(xué)生的轉(zhuǎn)化思想與運算求解能力,屬于中檔題.5、C【解析】求得兩圓的圓心坐標(biāo)和半徑,結(jié)合兩圓相外切,列出方程,即可求解.【詳解】由題意,圓與圓可得,,因為兩圓相外切,可得,解得故選:C.6、C【解析】,,若,則,項,符合條件,故選7、C【解析】設(shè),,由消得:,又,由韋達定理代入計算即可得答案.【詳解】設(shè),,由消得:,所以,故.故選:C【點睛】本題主要考查了直線與拋物線的位置關(guān)系,直線的斜率公式,考查了轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.8、C【解析】根據(jù)雙曲線和直線的對稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進行求解即可.【詳解】設(shè)雙曲線的右焦點為F2,過原點傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關(guān)于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點睛】關(guān)鍵點睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.9、B【解析】利用逆否命題、含有邏輯聯(lián)結(jié)詞命題的真假性、充分和必要條件、空間基底等知識對四個判斷進行分析,由此確定正確答案.【詳解】①,原命題的逆否命題為“,若且,則”,逆否命題是真命題,所以原命題是真命題,①正確.②,若“”為真命題,則p,q至少有一個真命題,②錯誤.③,函數(shù)為偶函數(shù)的充要條件是“”.所以“”是函數(shù)為偶函數(shù)的充分不必要條件,③錯誤.④,若為空間的一個基底,即不共面,若共面,則存在不全為零的,使得,故,因為為空間的一個基底,,故,矛盾,故不共面,所以構(gòu)成空間的另一基底,④正確.所以正確的判斷是個.故選:B10、A【解析】寫出點坐標(biāo),由對稱性易得線段長【詳解】點是點,,關(guān)于平面的對稱點,的橫標(biāo)和縱標(biāo)與相同,而豎標(biāo)與相反,,,,直線與軸平行,,故選:A11、D【解析】由題意可得兩點的坐標(biāo)滿足圓,然后由圓的性質(zhì)可得當(dāng)時,弦長最小,當(dāng)過點時,弦長最長,再根據(jù)向量數(shù)量積的運算律求解即可【詳解】設(shè)點,則以A,B為圓心,2為半徑的兩圓方程分別為和,因為兩圓過,所以和,所以兩點的坐標(biāo)滿足圓,因為點與不重合的點A,B共線,所以為圓的一條弦,所以當(dāng)弦長最小時,,因為,半徑為2,所以弦長的最小值為,當(dāng)過點時,弦長最長為4,因為,所以當(dāng)弦長最小時,的最大值為,當(dāng)弦長最大時,的最小值為,所以的取值范圍為,故選:D12、A【解析】應(yīng)用直線與圓的相離關(guān)系可得,再由余弦定理及三角形內(nèi)角的性質(zhì)即可判斷三角形的形狀.【詳解】由題設(shè),,即,又,所以,且,故以,,為邊長的三角形為鈍角三角形.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】兩圓方程相減可得公共弦所在直線方程,即該直線截其中一圓求弦長即可【詳解】圓與圓兩式相減得,公共弦所在直線方程為:圓,圓心為到公共弦的距離為:公共弦長故答案為:14、【解析】由直線的方程求出直線的斜率以及,兩點坐標(biāo),進而可得線段的垂直平分線的斜率以及線段的中點坐標(biāo),利用點斜式即可求解.【詳解】由直線可得,所以直線的斜率為,所以線段的垂直平分線的斜率為,令可得;令可得;即,,所以線段的中點坐標(biāo)為,所以線段的垂直平分線的方程為,整理得.故答案為:.15、【解析】根據(jù)等比數(shù)列的通項公式可得,結(jié)合即可求出公比.【詳解】設(shè)等比數(shù)列的公式為q,則,即,解得,又,所以,所以.故答案為:.16、【解析】可知B對的邊最大,再用正弦定理計算即可.【詳解】利用正弦定理可知,B對的邊最大,因為,,所以,.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)有;(2)(i)答案見解析;(ii)250.【解析】(1)根據(jù)列聯(lián)表中的數(shù)據(jù),利用求得,與臨界表值對比下結(jié)論;(2)(ⅰ)根據(jù),利用小概率事件判斷;(ⅱ)易得一個患者屬于“長潛伏期”的概率是,進而得到,然后判斷其單調(diào)性求解.【詳解】(1)依題意有,由于,故有的把握認為“長期潛伏”與年齡有關(guān);(2)(ⅰ)若潛伏期,由,得知潛伏期超過天的概率很低,因此隔離天是合理的;(ⅱ)由于個病例中有個屬于長潛伏期,若以樣本頻率估計概率,一個患者屬于“長潛伏期”的概率是,于是,則,,當(dāng)時,;當(dāng)時,;∴,.故當(dāng)時,取得最大值.【點睛】方法點睛:利用獨立重復(fù)試驗概率公式可以簡化求概率的過程,但需要注意檢查該概率模型是否滿足公式的三個條件:(1)在一次試驗中某事件A發(fā)生的概率是一個常數(shù)p;(2)n次試驗不僅是在完全相同的情況下進行的重復(fù)試驗,而且各次試驗的結(jié)果是相互獨立的;(3)該公式表示n次試驗中事件A恰好發(fā)生了k次的概率18、(1);(2)【解析】(1)由圓的一般式方程求出圓心代入直線即可求出得值,即可求解;(2)先計算圓心到直線的距離,利用即可求弦長.【詳解】(1)由圓,可得所以圓心為,半徑又圓心在直線上,即,解得所以圓的一般方程為,故圓的標(biāo)準(zhǔn)方程為(2)由(1)知,圓心,半徑圓心到直線的距離則直線被圓截得的弦的長為所以,直線被圓截得弦的長為【點睛】方法點睛:圓的弦長的求法(1)幾何法,設(shè)圓的半徑為,弦心距為,弦長為,則;(2)代數(shù)法,設(shè)直線與圓相交于,,聯(lián)立直線與圓的方程,消去得到一個關(guān)于的一元二次方程,從而可求出,,根據(jù)弦長公式,即可得出結(jié)果.19、(1)(2),【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)的正負判斷f(x)的單調(diào)性,根據(jù)其單調(diào)性即可求最大值和最小值.【小問1詳解】,切點為(1,-2),∵,∴切線斜率,切線方程為;【小問2詳解】令,解得,1200極大值極小值2∵,,∴當(dāng)時,,.20、(1)單調(diào)遞增區(qū)間為;單調(diào)減區(qū)間為和;(2);.【解析】(1)求出導(dǎo)函數(shù),令,求出單調(diào)遞增區(qū)間;令,求出單調(diào)遞減區(qū)間.(2)求出函數(shù)的單調(diào)區(qū)間,利用函數(shù)的單調(diào)性即可求解.【詳解】1函數(shù)的定義域是R,,令,解得令,解得或,所以的單調(diào)遞增區(qū)間為,單調(diào)減區(qū)間為和;2由在單調(diào)遞減,在單調(diào)遞增,所以,而,,故最大值是.21、(1)(2)【解析】(1)根據(jù)冪函數(shù)的定義和單調(diào)性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論