版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆上海市上海師范大學(xué)第二附屬中學(xué)高三數(shù)學(xué)第一學(xué)期期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)()的部分圖象如圖所示,且,則的最小值為()A. B.C. D.2.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.3.已知函數(shù),則不等式的解集為()A. B. C. D.4.若的二項式展開式中二項式系數(shù)的和為32,則正整數(shù)的值為()A.7 B.6 C.5 D.45.已知函數(shù)若關(guān)于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.6.設(shè)為自然對數(shù)的底數(shù),函數(shù),若,則()A. B. C. D.7.拋物線方程為,一直線與拋物線交于兩點,其弦的中點坐標(biāo)為,則直線的方程為()A. B. C. D.8.已知函數(shù),滿足對任意的實數(shù),都有成立,則實數(shù)的取值范圍為()A. B. C. D.9.函數(shù)的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位10.已知函數(shù)的圖象的一條對稱軸為,將函數(shù)的圖象向右平行移動個單位長度后得到函數(shù)圖象,則函數(shù)的解析式為()A. B.C. D.11.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.12.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現(xiàn)從中摸出3個球(除顏色與編號外球沒有區(qū)別),則恰好不同時包含字母,,的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)全集,,,則______.14.三個小朋友之間送禮物,約定每人送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),則三人都收到禮物的概率為______.15.已知雙曲線的左右焦點為,過作軸的垂線與相交于兩點,與軸相交于.若,則雙曲線的離心率為_________.16.直線(,)過圓:的圓心,則的最小值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)函數(shù).(1)若,時,在上單調(diào)遞減,求的取值范圍;(2)若,,,求證:當(dāng)時,.18.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程是,射線與圓的交點為、,與直線的交點為,求線段的長.19.(12分)已知.(1)解關(guān)于x的不等式:;(2)若的最小值為M,且,求證:.20.(12分)已知.(1)當(dāng)時,求不等式的解集;(2)若,,證明:.21.(12分)已知數(shù)列的前項和為,且滿足,各項均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和22.(10分)在平面直角坐標(biāo)系中,有一個微型智能機器人(大小不計)只能沿著坐標(biāo)軸的正方向或負(fù)方向行進(jìn),且每一步只能行進(jìn)1個單位長度,例如:該機器人在點處時,下一步可行進(jìn)到、、、這四個點中的任一位置.記該機器人從坐標(biāo)原點出發(fā)、行進(jìn)步后落在軸上的不同走法的種數(shù)為.(1)分別求、、的值;(2)求的表達(dá)式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
是函數(shù)的零點,根據(jù)五點法求出圖中零點及軸左邊第一個零點可得.【詳解】由題意,,∴函數(shù)在軸右邊的第一個零點為,在軸左邊第一個零點是,∴的最小值是.故選:A.【點睛】本題考查三角函數(shù)的周期性,考查函數(shù)的對稱性.函數(shù)的零點就是其圖象對稱中心的橫坐標(biāo).2、B【解析】
連接、,即可得到,,再根據(jù)平面向量的數(shù)量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數(shù)量積及其運算律的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.4、C【解析】
由二項式系數(shù)性質(zhì),的展開式中所有二項式系數(shù)和為計算.【詳解】的二項展開式中二項式系數(shù)和為,.故選:C.【點睛】本題考查二項式系數(shù)的性質(zhì),掌握二項式系數(shù)性質(zhì)是解題關(guān)鍵.5、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關(guān)于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設(shè)由根的分布可知,,解得.故選:B.【點睛】本題考查復(fù)合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學(xué)生轉(zhuǎn)化與化歸和數(shù)形結(jié)合的思想,是一道中檔題.6、D【解析】
利用與的關(guān)系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數(shù)值的計算,屬于基礎(chǔ)題.7、A【解析】
設(shè),,利用點差法得到,所以直線的斜率為2,又過點,再利用點斜式即可得到直線的方程.【詳解】解:設(shè),∴,又,兩式相減得:,∴,∴,∴直線的斜率為2,又∴過點,∴直線的方程為:,即,故選:A.【點睛】本題考查直線與拋物線相交的中點弦問題,解題方法是“點差法”,即設(shè)出弦的兩端點坐標(biāo),代入拋物線方程相減后可把弦所在直線斜率與中點坐標(biāo)建立關(guān)系.8、B【解析】
由題意可知函數(shù)為上為減函數(shù),可知函數(shù)為減函數(shù),且,由此可解得實數(shù)的取值范圍.【詳解】由題意知函數(shù)是上的減函數(shù),于是有,解得,因此,實數(shù)的取值范圍是.故選:B.【點睛】本題考查利用分段函數(shù)的單調(diào)性求參數(shù),一般要分析每支函數(shù)的單調(diào)性,同時還要考慮分段點處函數(shù)值的大小關(guān)系,考查運算求解能力,屬于中等題.9、C【解析】
根據(jù)正弦型函數(shù)的圖象得到,結(jié)合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數(shù)值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應(yīng)的特殊點求,一般用最高點或最低點求.10、C【解析】
根據(jù)輔助角公式化簡三角函數(shù)式,結(jié)合為函數(shù)的一條對稱軸可求得,代入輔助角公式得的解析式.根據(jù)三角函數(shù)圖像平移變換,即可求得函數(shù)的解析式.【詳解】函數(shù),由輔助角公式化簡可得,因為為函數(shù)圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數(shù)的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數(shù)式的應(yīng)用,三角函數(shù)對稱軸的應(yīng)用,三角函數(shù)圖像平移變換的應(yīng)用,屬于中檔題.11、C【解析】
由圖象可知,可解得,利用三角恒等變換化簡解析式可得,令,即可求得.【詳解】依題意,,即,解得;因為所以,當(dāng)時,.故選:C.【點睛】本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡中的應(yīng)用,難度一般.12、B【解析】
首先求出基本事件總數(shù),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數(shù)為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點睛】本題考查了古典概型及其概率計算公式,考查了排列組合的知識,解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出集合,,然后根據(jù)交集、補集的定義求解即可.【詳解】解:,或;∴;∴.故答案為:.【點睛】本題主要考查集合的交集、補集運算,屬于基礎(chǔ)題.14、【解析】
基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).由此能求出三人都收到禮物的概率.【詳解】三個小朋友之間準(zhǔn)備送禮物,約定每人只能送出一份禮物給另外兩人中的一人(送給兩個人的可能性相同),基本事件總數(shù),三人都收到禮物包含的基本事件個數(shù).則三人都收到禮物的概率.故答案為:.【點睛】本題考查古典概型概率的求法,考查運算求解能力,屬于基礎(chǔ)題.15、【解析】
由已知可得,結(jié)合雙曲線的定義可知,結(jié)合,從而可求出離心率.【詳解】解:,,又,則.,,,即解得,即.故答案為:.【點睛】本題考查了雙曲線的定義,考查了雙曲線的性質(zhì).本題的關(guān)鍵是根據(jù)幾何關(guān)系,分析出.關(guān)于圓錐曲線的問題,一般如果能結(jié)合幾何性質(zhì),可大大減少計算量.16、;【解析】
求出圓心坐標(biāo),代入直線方程得的關(guān)系,再由基本不等式求得題中最小值.【詳解】圓:的標(biāo)準(zhǔn)方程為,圓心為,由題意,即,∴,當(dāng)且僅當(dāng),即時等號成立,故答案為:.【點睛】本題考查用基本不等式求最值,考查圓的標(biāo)準(zhǔn)方程,解題方法是配方法求圓心坐標(biāo),“1”的代換法求最小值,目的是湊配出基本不等式中所需的“定值”.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)在上單調(diào)遞減等價于在恒成立,分離參數(shù)即可解決.(2)先對求導(dǎo),化簡后根據(jù)零點存在性定理判斷唯一零點所在區(qū)間,構(gòu)造函數(shù)利用基本不等式求解即可.【詳解】(1),時,,,∵在上單調(diào)遞減.∴,.令,,時,;時,,∴在上為減函數(shù),在上為增函數(shù).∴,∴.∴的取值范圍為.(2)若,,時,,,令,顯然在上為增函數(shù).又,,∴有唯一零點.且,時,,;時,,,∴在上為增函數(shù),在上為減函數(shù).∴.又,∴,,.∴.,.∴當(dāng)時,.【點睛】此題考查函數(shù)定區(qū)間上單調(diào),和零點存在性定理等知識點,難點為找到最值后的構(gòu)造函數(shù)求值域,屬于較難題目.18、(1)(2)【解析】
(1)首先將參數(shù)方程轉(zhuǎn)化為普通方程再根據(jù)公式化為極坐標(biāo)方程即可;(2)設(shè),,由,即可求出,則計算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標(biāo)方程為.(2)設(shè),由,解得.設(shè),由,解得.∵,∴.【點睛】本題考查了利用極坐標(biāo)方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.19、(1);(2)證明見解析.【解析】
(1)分類討論求解絕對值不等式即可;(2)由(1)中所得函數(shù),求得最小值,再利用均值不等式即可證明.【詳解】(1)當(dāng)時,等價于,該不等式恒成立,當(dāng)時,等價于,該不等式解集為,當(dāng)時,等價于,解得,綜上,或,所以不等式的解集為.(2),易得的最小值為1,即因為,,,所以,,,所以,當(dāng)且僅當(dāng)時等號成立.【點睛】本題考查利用分類討論求解絕對值不等式,涉及利用均值不等式證明不等式,屬綜合中檔題.20、(1)(2)見證明【解析】
(1)利用零點分段法討論去掉絕對值求解;(2)利用絕對值不等式的性質(zhì)進(jìn)行證明.【詳解】(1)解:當(dāng)時,不等式可化為.當(dāng)時,,,所以;當(dāng)時,,.所以不等式的解集是.(2)證明:由,,得,,,又,所以,即.【點睛】本題主要考查含有絕對值不等式問題的求解,含有絕對值不等式的解法一般是使用零點分段討論法.21、(1);(2)【解析】
(1)由化為,利用數(shù)列的通項公式和前n項和的關(guān)系,得到是首項為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯位相減法求解.【詳解】(1)可以化為,,,,又時,數(shù)列從開始成等差數(shù)列,,代入得是首項為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系和錯位相減法求和,還考查了運算求解的能力,屬于中檔題.22、(1),,,(2)【解析】
(1)根據(jù)機器人的進(jìn)行規(guī)律可確定、、的值;(2)首先根據(jù)機器人行進(jìn)規(guī)則知機器人沿軸行進(jìn)步,必須沿軸負(fù)方向行進(jìn)相同的步數(shù),而余下的每一步行進(jìn)方向都有兩個選擇(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年私人汽車交易合同范例
- 二零二五年度個人股權(quán)抵押貸款合同樣本4篇
- 二零二五年度房產(chǎn)買賣合同售后服務(wù)保障協(xié)議3篇
- 二零二五年度個人寫字樓買賣合同標(biāo)準(zhǔn)范本4篇
- 二零二五年度企業(yè)適用復(fù)雜情況轉(zhuǎn)股協(xié)議模板3篇
- 浙江文化展廳設(shè)計施工方案
- 隧道燈施工方案
- 青海工業(yè)展示館施工方案
- 二零二五版水暖工程項目管理與咨詢合同3篇
- 二零二五年度家居建材銷售提成合同樣本2篇
- 蛋糕店服務(wù)員勞動合同
- 土地買賣合同參考模板
- 2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題一-微專題10-同構(gòu)函數(shù)問題-專項訓(xùn)練【含答案】
- 新能源行業(yè)市場分析報告
- 2025年天津市政建設(shè)集團招聘筆試參考題庫含答案解析
- 2024-2030年中國烘焙食品行業(yè)運營效益及營銷前景預(yù)測報告
- 巖土工程勘察.課件
- 60歲以上務(wù)工免責(zé)協(xié)議書
- 康復(fù)醫(yī)院患者隱私保護管理制度
- 2022年7月2日江蘇事業(yè)單位統(tǒng)考《綜合知識和能力素質(zhì)》(管理崗)
- 沈陽理工大學(xué)《數(shù)》2022-2023學(xué)年第一學(xué)期期末試卷
評論
0/150
提交評論