![2025屆湖北隨州市普通高中高二數學第一學期期末調研試題含解析_第1頁](http://file4.renrendoc.com/view14/M07/0D/2B/wKhkGWcJYImACD0CAAHV6JZNw3g078.jpg)
![2025屆湖北隨州市普通高中高二數學第一學期期末調研試題含解析_第2頁](http://file4.renrendoc.com/view14/M07/0D/2B/wKhkGWcJYImACD0CAAHV6JZNw3g0782.jpg)
![2025屆湖北隨州市普通高中高二數學第一學期期末調研試題含解析_第3頁](http://file4.renrendoc.com/view14/M07/0D/2B/wKhkGWcJYImACD0CAAHV6JZNw3g0783.jpg)
![2025屆湖北隨州市普通高中高二數學第一學期期末調研試題含解析_第4頁](http://file4.renrendoc.com/view14/M07/0D/2B/wKhkGWcJYImACD0CAAHV6JZNw3g0784.jpg)
![2025屆湖北隨州市普通高中高二數學第一學期期末調研試題含解析_第5頁](http://file4.renrendoc.com/view14/M07/0D/2B/wKhkGWcJYImACD0CAAHV6JZNw3g0785.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆湖北隨州市普通高中高二數學第一學期期末調研試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面,的法向量分別為,,且,則()A. B.C. D.2.已知雙曲線的右焦點為F,雙曲線C的右支上有一點P滿是(點O為坐標原點),那么雙曲線C的離心率為()A. B.C. D.3.數列中,,,.當時,則n等于()A.2016 B.2017C.2018 D.20194.復數的共軛復數的虛部為()A. B.C. D.5.小王與小張二人參加某射擊比賽預賽的五次測試成績如下表所示,設小王與小張成績的樣本平均數分別為和,方差分別為和,則()第一次第二次第三次第四次第五次小王得分(環(huán))910579小張得分(環(huán))67557A. B.C. D.6.《鏡花緣》是清代文人李汝珍創(chuàng)作的長篇小說,書中有這樣一個情節(jié):一座樓閣到處掛滿了五彩繽紛的大小燈球,燈球有兩種,一種是大燈下綴2個小燈,另一種是大燈下綴4個小燈,大燈共360個,小燈共1200個.若在這座樓閣的燈球中,隨機選取一個燈球,則這個燈球是大燈下綴4個小燈的概率為A. B.C. D.7.已知圓,直線,直線l被圓O截得的弦長最短為()A. B.C.8 D.98.如圖,在三棱錐中,兩兩垂直,且,點E為中點,若直線與所成的角為,則三棱錐的體積等于()A. B.C.2 D.9.已知隨機變量X的分布列如表所示,則()X123Pa2a3aA. B.C. D.10.已知四棱錐,底面為平行四邊形,分別為,上的點,,設,則向量用為基底表示為()A. B.C. D.11.直線:和圓的位置關系是()A.相離 B.相切或相交C.相交 D.相切12.已知雙曲線上的點到的距離為15,則點到點的距離為()A.7 B.23C.5或25 D.7或23二、填空題:本題共4小題,每小題5分,共20分。13.我國民間剪紙藝術在剪紙時經常會沿紙的某條對稱軸把紙對折.現(xiàn)有一張半徑為的圓形紙,對折次可以得到兩個規(guī)格相同的圖形,將其中之一進行第次對折后,就會得到三個圖形,其中有兩個規(guī)格相同,取規(guī)格相同的兩個之一進行第次對折后,就會得到四個圖形,其中依然有兩個規(guī)格相同,以此類推,每次對折后都會有兩個圖形規(guī)格相同.如果把次對折后得到的不同規(guī)格的圖形面積和用表示,由題意知,,則________;如果對折次,則________.14.曲線在點處的切線方程為_____________.15.已知矩形的長為2,寬為1,以該矩形的邊所在直線為軸旋轉一周得到的幾何體的表面積為___________.16.已知橢圓C:,點M與C的焦點不重合,若M關于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知:,有,:方程表示經過第二、三象限的拋物線,.(1)若是真命題,求實數的取值范圍;(2)若“”是假命題,“”是真命題,求實數的取值范圍.18.(12分)已知橢圓的左、右焦點分別為,,離心率為,過的直線與橢圓交于,兩點,若的周長為8.(1)求橢圓的標準方程;(2)設為橢圓上的動點,過原點作直線與橢圓分別交于點、(點不在直線上),求面積的最大值.19.(12分)已知數列和滿足,(1)若,求的通項公式;(2)若,,證明為等差數列,并求和的通項公式20.(12分)已知數列是等差數列,其前項和為,且,.(1)求;(2)記數列的前項和為,求當取得最小值時的的值.21.(12分)已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.(1)求橢圓的方程;(2)求的面積.22.(10分)銳角中滿足,其中分別為內角的對邊(I)求角;(II)若,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】由題得,解方程即得解.【詳解】解:因為,所以所以,所以,所以.故選:D2、D【解析】分析焦點三角形即可【詳解】如圖,設左焦點為,因為,所以不妨設,則離心率故選:D3、B【解析】根據已知條件用逐差法求得的通項公式,再根據裂項求和法求得,代值計算即可.【詳解】因為,,則,即,則,故,又,即,解得.故選:B.4、B【解析】先根據復數除法與加法運算求解得,再求共軛復數及其虛部.【詳解】解:,所以其共軛復數為,其虛部為故選:B5、C【解析】根據圖表數據可以看出小王和小張的平均成績和成績波動情況.【詳解】解:從圖表中可以看出小王每次的成績均不低于小張,但是小王成績波動比較大,故設小王與小張成績的樣本平均數分別為和,方差分別為和.可知故選:C6、B【解析】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意求得,再由古典概型及其概率的公式,即可求解【詳解】設大燈下綴2個小燈為個,大燈下綴4個小燈有個,根據題意可得,解得,則燈球的總數為個,故這個燈球是大燈下綴4個小燈的概率為,故選B【點睛】本題主要考查了古典概型及其概率的計算,其中解答中根據題意列出方程組,求得兩種燈球的數量是解答的關鍵,著重考查了運算與求解能力,屬于基礎題7、B【解析】先求得直線過定點,再根據當點與圓心連線垂直于直線l時,被圓O截得的弦長最短求解.【詳解】因為直線方程,即為,所以直線過定點,因為點在圓的內部,當點與圓心連線垂直于直線l時,被圓O截得的弦長最短,點與圓心(0,0)的距離為,此時,最短弦長為,故選:B8、D【解析】由題意可證平面,取BD的中點F,連接EF,則為直線與所成的角,利用余弦定理求出,根據三棱錐體積公式即可求得體積【詳解】如圖,∵,點為的中點,∴,,∵,,兩兩垂直,,∴平面,取BD的中點F,連接EF,∴為直線與所成的角,且,由題意可知,,設,連接AF,則,在中,由余弦定理,得,即,解得,即∴三棱錐的體積故選:9、C【解析】根據分布列性質計算可得;【詳解】解:依題意,解得,所以;故選:C10、D【解析】通過尋找封閉的三角形,將相關向量一步步用基底表示即可.【詳解】.故選:D11、C【解析】直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上,直線的斜率存在,故可知直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關系【詳解】圓C:x2+y2﹣2y=0可化為x2+(y﹣1)2=1∴圓心為(0,1),半徑為1∵直線l:y﹣1=k(x﹣1)恒過點(1,1),且點(1,1)在圓上且直線的斜率存在∴直線l:y﹣1=k(x﹣1)和圓C:x2+y2﹣2y=0的關系是相交,故選C【點睛】本題考查的重點是直線與圓的位置關系,解題的關鍵是確定直線恒過定點,此題易誤選B,忽視直線的斜率存在12、D【解析】根據雙曲線的定義知,,即可求解.【詳解】由題意,雙曲線,可得焦點坐標,根據雙曲線的定義知,,而,所以或故選:D【點睛】本題主要考查了雙曲線的定義及其應用,其中解答中熟記雙曲線的定義,列出方程是解答的關鍵,著重考查推理與運算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】首先根據題意得到,再計算即可;根據題意得到,再利用分組求和法求和即可.【詳解】因為,,所以,所以..故答案為:;14、【解析】求導,求出切線斜率,進而寫出切線方程.【詳解】,則,故切斜方程為:,即故答案為:15、或##或【解析】分兩種情況進行解答,①以邊長為2的邊為軸旋轉,②以邊長為1的邊為軸旋轉.進行解答即可【詳解】解:①以邊長為2的邊為軸旋轉,表面積兩個底面積側面積,即:,②以邊長為1的邊為軸旋轉,表面積兩個底面積側面積,即:,故答案為:或16、【解析】設M,N的中點坐標為P,,則;由于,化簡可得,根據橢圓的定義==6,所以12.考點:1.橢圓的定義;2.兩點距離公式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)將問題轉化為不等式對應的方程無解,進而根據根的判別式小于0,計算即可;(2)根據且、或命題的真假判斷命題p、q的真假,列出對應的不等式組,解之即可.【小問1詳解】由條件知,恒成立,只需的.解得.【小問2詳解】若為真命題,則,解得.若“”是假命題,“”是真命題,所以和一真一假若真假,則,解得.若假真,則,解得.綜上,實數的取值范圍是.18、(1);(2).【解析】(1)根據周長可求,再根據離心率可求,求出后可求橢圓的方程.(2)當直線軸時,計算可得的面積的最大值為,直線不垂直軸時,可設,聯(lián)立直線方程和橢圓方程可求,設與平行且與橢圓相切的直線為:,結合橢圓方程可求的關系,從而求出該直線到直線的距離,從而可求的面積的最大值為.【詳解】(1)由橢圓的定義可知,的周長為,∴,,又離心率為,∴,,所以橢圓方程為.(2)當直線軸時,;當直線不垂直軸時,設,,,∴.設與平行且與橢圓相切的直線為:,,∵,∴,∴距的最大距離為,∴,綜上,面積的最大值為.【點睛】方法點睛:求橢圓的標準方程,關鍵是基本量的確定,而面積的最值的計算,則可以轉化為與已知直線平行且與橢圓相切的直線與已知直線的距離來計算,此類轉化為面積最值計算過程的常規(guī)轉化.19、(1)(2)證明見解析,,【解析】(1)代入可得,變形得構造等比數列求的通項公式;(2)先由已知得,先分別求出,的通項公式,然后合并可得的通項公式,進而可得的通項公式【小問1詳解】當,時,,所以,即,整理得,所以是以為首項,為公比的等比數列故,即【小問2詳解】當時,由,,得,所以因為,所以,則是以為首項,2為公差的等差數列,,;是以為首項,2為公差的等差數列,,綜上所述,所以,,故是以2為首項,1為公差的等差數列當時,,且滿足,所以20、(1)(2)10或11【解析】(1)利用通項公式以及求和公式列出方程組得出;(2)先求出數列通項公式,再根據得出取得最小值時的的值.【小問1詳解】設等差數列的公差為,則由得解得所以.【小問2詳解】因為,所以,則.令,解得,由于,故或,故當前項和取得最小值時的值為10或11.21、(1)(2)【解析】(1)根據橢圓的簡單幾何性質知,又,寫出橢圓的方程;(2)先斜截式設出直線,聯(lián)立方程組,根據直線與圓錐曲線的位置關系,可得出中點為的坐標,再根據△為等腰三角形知,從而得的斜率為,求出,寫出:,并計算,再根據點到直線距離公式求高,即可計算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設直線的方程為,由得,①設、的坐標分別為,(),中點為,則,,因為是等腰△的底邊,所以所以的斜率為,解得,此時方程①為解得,,所以,,所以,此時,點到直線:距離,所以△的面積考點:1、橢圓的簡單幾何性質;2、直線和橢圓的位置關系;3、橢圓的標準方程;4、點到直線的距離.【思路點晴】本題主要考查的是橢圓的方程,橢圓的簡單幾何性質,直線與橢圓的位置關系,點到直線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘇科版數學八年級下冊《9.5 三角形的中位線》聽評課記錄
- 青島版數學八年級上冊2.6《等腰三角形》聽評課記錄2
- 湘教版數學八年級上冊1.4《分式的加法和減法》聽評課記錄6
- 2025年金屬冶煉加工合作協(xié)議書
- 小學二年級數學口算訓練題
- 幼兒籃球周末培訓班合作協(xié)議書范本
- 外貿公司用工勞動合同范本
- 租賃安全協(xié)議書范本
- 二零二五年度智慧城市軟件外包合作協(xié)議
- 2025年度雞蛋電商平臺合作協(xié)議模板帶數據共享與平臺運營
- 我的消防文員職業(yè)規(guī)劃
- 人教PEP版2025年春季小學英語三年級下冊教學計劃
- 2025年公司品質部部門工作計劃
- 2024年世界職業(yè)院校技能大賽高職組“市政管線(道)數字化施工組”賽項考試題庫
- 華為研發(fā)部門績效考核制度及方案
- CSC資助出國博士聯(lián)合培養(yǎng)研修計劃英文-research-plan
- 《環(huán)境管理學》教案
- 2025年蛇年年度營銷日歷營銷建議【2025營銷日歷】
- (一模)寧波市2024學年第一學期高考模擬考試 數學試卷(含答案)
- 攝影入門課程-攝影基礎與技巧全面解析
- 冀少版小學二年級下冊音樂教案
評論
0/150
提交評論