河北省廊坊市省級示范高中聯(lián)合體2025屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第1頁
河北省廊坊市省級示范高中聯(lián)合體2025屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第2頁
河北省廊坊市省級示范高中聯(lián)合體2025屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第3頁
河北省廊坊市省級示范高中聯(lián)合體2025屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第4頁
河北省廊坊市省級示范高中聯(lián)合體2025屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河北省廊坊市省級示范高中聯(lián)合體2025屆高二數(shù)學(xué)第一學(xué)期期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A. B.C. D.3.“”是“直線和直線垂直”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分又非必要條件4.若數(shù)列滿足,則()A.2 B.6C.12 D.205.已知直線過點(diǎn),,則直線的方程為()A. B.C. D.6.已知函數(shù)的圖象如圖所示,則其導(dǎo)函數(shù)的圖象大致形狀為()A. B.C. D.7.設(shè)為坐標(biāo)原點(diǎn),直線與拋物線C:交于,兩點(diǎn),若,則的焦點(diǎn)坐標(biāo)為()A. B.C. D.8.已知拋物線的焦點(diǎn)為,拋物線上的兩點(diǎn),均在第一象限,且,,,則直線的斜率為()A.1 B.C. D.9.已知拋物線上的一點(diǎn),則點(diǎn)M到拋物線焦點(diǎn)F的距離等于()A.6 B.5C.4 D.210.曲線上的點(diǎn)到直線的距離的最小值是()A.3 B.C.2 D.11.拋物線的焦點(diǎn)坐標(biāo)是A. B.C. D.12.已知點(diǎn)是拋物線上的動點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為,則的最小值為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線:()的焦點(diǎn)到準(zhǔn)線的距離為4,過點(diǎn)的直線與拋物線交于,兩點(diǎn),若,則______14.知函數(shù),若函數(shù)有兩個不同的零點(diǎn),則實(shí)數(shù)的取值范圍為_____________.15.設(shè),分別是橢圓C:左、右焦點(diǎn),點(diǎn)M為橢圓C上一點(diǎn)且在第一象限,若為等腰三角形,則M的坐標(biāo)為___________16.已知,,則___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)芯片作為在集成電路上的載體,廣泛應(yīng)用在手機(jī)、軍工、航天等多個領(lǐng)域,是能夠影響一個國家現(xiàn)代工業(yè)的重要因素.根據(jù)市場調(diào)研與統(tǒng)計(jì),某公司七年時(shí)間里在芯片技術(shù)上的研發(fā)投入x(億元)與收益y(億元)的數(shù)據(jù)統(tǒng)計(jì)如下:(1)根據(jù)折線圖數(shù)據(jù),求y關(guān)于x的線性回歸方程(系數(shù)精確到整數(shù)部分);(2)為鼓勵科技創(chuàng)新,當(dāng)研發(fā)技術(shù)投入不少于16億元時(shí),國家給予公司補(bǔ)貼5億元,預(yù)測當(dāng)芯片的研發(fā)投入為17億元時(shí)公司的實(shí)際收益附:其回歸方程的斜率和截距的最小二乘法估計(jì)分別為,.參考數(shù)據(jù),18.(12分)已知拋物線的焦點(diǎn)到準(zhǔn)線的距離為2.(1)求C的方程:(2)過C上一動點(diǎn)P作圓兩條切線,切點(diǎn)分別為A,B,求四邊形PAMB面積的最小值.19.(12分)已知等差數(shù)列滿足;正項(xiàng)等比數(shù)列滿足,,(1)求數(shù)列,的通項(xiàng)公式;(2)數(shù)列滿足,的前n項(xiàng)和為,求的最大值.20.(12分)已知函數(shù)的圖象在點(diǎn)處的切線與直線平行(是自然對數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實(shí)數(shù)的取值范圍.21.(12分)已知橢圓的離心率為,以坐標(biāo)原點(diǎn)為圓心,以橢圓M的短半軸長為半徑的圓與直線有且只有一個公共點(diǎn)(1)求橢圓M的標(biāo)準(zhǔn)方程;(2)過橢圓M的右焦點(diǎn)F的直線交橢圓M于A,B兩點(diǎn),過F且垂直于直線的直線交橢圓M于C,D兩點(diǎn),則是否存在實(shí)數(shù)使成立?若存在,求出的值;若不存在,請說明理由22.(10分)已知橢圓,其焦點(diǎn)為,,離心率為,若點(diǎn)滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點(diǎn),為坐標(biāo)原點(diǎn),的重心滿足:,求實(shí)數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D2、C【解析】由題意確定流程圖的功能,然后計(jì)算其輸出值即可.【詳解】運(yùn)行程序,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,不滿足,,,滿足,利用裂項(xiàng)求和可得:.故選:C.【點(diǎn)睛】識別、運(yùn)行程序框圖和完善程序框圖的思路:(1)要明確程序框圖的順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)(2)要識別、運(yùn)行程序框圖,理解框圖所解決的實(shí)際問題(3)按照題目的要求完成解答并驗(yàn)證3、A【解析】根據(jù)直線垂直求出值即可得答案.【詳解】解:若直線和直線垂直,則,解得或,則“”是“直線和直線垂直”的充分非必要條件.故選:A.4、D【解析】由已知條件變形可得,然后累乘法可得,即可求出詳解】由得,,.故選:D5、C【解析】根據(jù)兩點(diǎn)的坐標(biāo)和直線的兩點(diǎn)式方程計(jì)算化簡即可.【詳解】由直線的兩點(diǎn)式方程可得,直線l的方程為,即故選:C6、A【解析】利用f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,結(jié)合導(dǎo)數(shù)的幾何意義判斷即可.【詳解】由f(x)的圖象可知,函數(shù)f(x)先單調(diào)遞增的速度由快到慢,再由慢到快,由導(dǎo)數(shù)的幾何意義可知,先減后增,且恒大于0,故符合題意的只有選項(xiàng)A.故選:A.7、B【解析】根據(jù)題中所給的條件,結(jié)合拋物線的對稱性,可知,從而可以確定出點(diǎn)的坐標(biāo),代入方程求得的值,進(jìn)而求得其焦點(diǎn)坐標(biāo),得到結(jié)果.【詳解】因?yàn)橹本€與拋物線交于兩點(diǎn),且,根據(jù)拋物線的對稱性可以確定,所以,代入拋物線方程,求得,所以其焦點(diǎn)坐標(biāo)為,故選:B.【點(diǎn)睛】該題考查的是有關(guān)圓錐曲線的問題,涉及到的知識點(diǎn)有直線與拋物線的交點(diǎn),拋物線的對稱性,點(diǎn)在拋物線上的條件,拋物線的焦點(diǎn)坐標(biāo),屬于簡單題目.8、C【解析】作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,結(jié)合拋物線定義得出斜率為可求.【詳解】如圖:作垂直準(zhǔn)線于,垂直準(zhǔn)線于,作于,因?yàn)?,,,由拋物線的定義可知:,,,所以,直線斜率為:.故選:C.9、B【解析】將點(diǎn)代入拋物線方程求出,再由拋物線的焦半徑公式可得答案.詳解】將點(diǎn)代入拋物線方程可得,解得則故選:B10、D【解析】求出函數(shù)的導(dǎo)函數(shù),設(shè)切點(diǎn)為,依題意即過切點(diǎn)的切線恰好與直線平行,此時(shí)切點(diǎn)到直線的距離最小,求出切點(diǎn)坐標(biāo),再利用點(diǎn)到直線的距離公式計(jì)算可得;【詳解】解:因?yàn)?,所以,設(shè)切點(diǎn)為,則,解得,所以切點(diǎn)為,點(diǎn)到直線的距離,所以曲線上的點(diǎn)到直線的距離的最小值是;故選:D11、D【解析】根據(jù)拋物線的焦點(diǎn)坐標(biāo)為可知,拋物線即的焦點(diǎn)坐標(biāo)為,故選D.考點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).12、C【解析】分析可知圓的圓心為拋物線的焦點(diǎn),可求出的最小值,再利用勾股定理可求得的最小值.【詳解】設(shè)點(diǎn)的坐標(biāo)為,有,由圓的圓心坐標(biāo)為,是拋物線的焦點(diǎn)坐標(biāo),有,由圓的幾何性質(zhì)可得,又由,可得的最小值為故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、15【解析】易得拋物線方程為,根據(jù),求得點(diǎn)P的坐標(biāo),進(jìn)而得到直線l的方程,與拋物線方程聯(lián)立,再利用拋物線定義求解.【詳解】解:因?yàn)閽佄锞€的焦點(diǎn)到準(zhǔn)線的距離為4,所以,則拋物線:,設(shè)點(diǎn)的坐標(biāo)為,的坐標(biāo)為,因?yàn)?,所以,則,則,所以直線的方程為,代入拋物線方程可得,故,則,所以故答案為:1514、【解析】根據(jù)分段函數(shù)的性質(zhì),結(jié)合冪函數(shù)、一次函數(shù)的單調(diào)性判斷零點(diǎn)的分布,進(jìn)而求m的范圍.【詳解】由解析式知:在上為增函數(shù)且,在上,時(shí)為單調(diào)函數(shù),時(shí)無零點(diǎn),故要使有兩個不同的零點(diǎn),即兩側(cè)各有一個零點(diǎn),所以在上必遞減且,則,可得.故答案為:15、【解析】先計(jì)算出,所以,利用余弦定理求出,即可求出,即得到M的橫坐標(biāo)為,代入橢圓C:求出.【詳解】橢圓C:,所以.因?yàn)镸在橢圓上,.因?yàn)镸在第一象限,故.為等腰三角形,則,所以,由余弦定理可得.過M作MA⊥x軸于A,則所以,即M的橫坐標(biāo)為.因?yàn)镸為橢圓C:上一點(diǎn)且在第一象限,所以,解得:所以M的坐標(biāo)為.故答案為:16、5【解析】根據(jù)空間向量的數(shù)量積運(yùn)算的坐標(biāo)表示運(yùn)算求解即可.【詳解】解:因?yàn)?,,所?故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)85億元【解析】(1)利用公式和數(shù)據(jù)計(jì)算即可(2)代入回歸直線計(jì)算即可小問1詳解】由折線圖中數(shù)據(jù)知,,,因?yàn)?所以所以y關(guān)于x的線性回歸方程為【小問2詳解】當(dāng)時(shí),億元,此時(shí)公司的實(shí)際收益的預(yù)測值為億元18、(1)(2)【解析】(1)根據(jù)拋物線方程求出交點(diǎn)坐標(biāo)和準(zhǔn)線方程,求出p即可;(2)設(shè),利用兩點(diǎn)坐標(biāo)求距離公式求出,根據(jù)四邊形PAMB的面積得到關(guān)于的二次函數(shù),結(jié)合二次函數(shù)的性質(zhì)即可得出結(jié)果.【小問1詳解】因?yàn)镃的焦點(diǎn)為,準(zhǔn)線為,由題意得,即,因此.【小問2詳解】圓M的圓心為,半徑為1.由條件可知,,且,于是.設(shè),則.當(dāng)時(shí)等號成立,所以四邊形PAMB面積的最小值為.19、(1),(2)8【解析】(1)利用已知的關(guān)系把替換成,再把兩式作差后整理即得通項(xiàng)公式,的通項(xiàng)公式可由已知條件建立基本量的方程求解.(2)由的通項(xiàng)公式可判斷,,,當(dāng)時(shí),所有正項(xiàng)的和即為的最大項(xiàng)的值.小問1詳解】,,兩式相減得所以,又也滿足,故;設(shè)等比數(shù)列的公比為,由得,即,因?yàn)?,即,,(?fù)值舍去),所以【小問2詳解】由題意,,則,,,且當(dāng)時(shí),所以的最大值是.20、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),根據(jù)題意結(jié)合導(dǎo)數(shù)的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導(dǎo)數(shù)求出函數(shù)的最小值,即可求得實(shí)數(shù)的取值范圍【小問1詳解】解:,因?yàn)楹瘮?shù)的圖象在點(diǎn)處的切線與直線平行,所以,解得;【小問2詳解】解:在上恒成立,即在上恒成立,,,令,則,當(dāng)時(shí),;當(dāng)時(shí),,函數(shù)在上單調(diào)遞減,有上單調(diào)遞增,,,即實(shí)數(shù)的取值范圍是21、(1)(2)存在,【解析】(1)求出后可得橢圓的標(biāo)準(zhǔn)方程.(2)設(shè)直線,聯(lián)立直線方程和橢圓方程,消元后利用韋達(dá)定理可用表示,從而可求的值.【小問1詳解】據(jù)題意,得,∴,∴所求橢圓M的標(biāo)準(zhǔn)方程為【小問2詳解】據(jù)(1)求解知,點(diǎn)F坐標(biāo)為若直線的斜率存在,且不等于0,設(shè)直線據(jù)得設(shè),則,∴同理可求知,∴,∴,即此時(shí)存滿足題設(shè);若直線的斜率不存在,則;若直線的斜率為0,則,此時(shí)若,則綜上,存在實(shí)數(shù),且使22、(1)(2)【解析】(1)運(yùn)用橢圓的離心率公式,結(jié)合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設(shè)出直線方程,聯(lián)立直線和橢圓方程,利用根與系數(shù)之間的關(guān)系、以及向量數(shù)量積的坐標(biāo)表示進(jìn)行求解即可.【小問1詳解】依題意

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論