版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆浙江省溫州市十五校聯(lián)合體高一數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù),則下列選項中正確的是()A.函數(shù)是單調增函數(shù)B.函數(shù)的值域為C.函數(shù)為偶函數(shù)D.函數(shù)的定義域為2.已知,若,則()A. B.C. D.3.半徑為2的扇形OAB中,已知弦AB的長為2,則的長為A. B.C. D.4.已知直線,直線,則與之間的距離為()A. B.C. D.5.函數(shù),設,則有A. B.C. D.6.已知集合,,則()A B.C. D.{1,2,3}7.設集合,,若對于函數(shù),其定義域為,值域為,則這個函數(shù)的圖象可能是()A. B.C. D.8.已知函數(shù),則函數(shù)的零點所在區(qū)間為()A.(0,1) B.(1,2)C.(2,3) D.(3,4)9.若偶函數(shù)f(x)在區(qū)間(﹣∞,0]上單調遞減,且f(3)=0,則不等式(x﹣1)f(x)>0的解集是A. B.C D.,10.若集合,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù),的值域為,則實數(shù)的取值范圍為__________.12.下列命題中所有正確的序號是______________①函數(shù)最小值為4;②函數(shù)的定義域是,則函數(shù)的定義域為;③若,則的取值范圍是;④若(,),則13.已知,則函數(shù)的最大值是__________14.若,,,則的最小值為____________.15.若扇形的面積為9,圓心角為2弧度,則該扇形的弧長為______16.已知直三棱柱的6個頂點都在球O的球面上,若,則球O的半徑為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)是定義在上的奇函數(shù)(1)求實數(shù)的值;(2)判斷函數(shù)的單調性,并利用定義證明18.若函數(shù)f(x)滿足f(logax)=·(x-)(其中a>0且a≠1).(1)求函數(shù)f(x)解析式,并判斷其奇偶性和單調性;(2)當x∈(-∞,2)時,f(x)-4的值恒為負數(shù),求a的取值范圍19.已知函數(shù).(1)當時,解不等式;(2)若不等式在上恒成立,求實數(shù)的取值范圍.20.已知平面向量,,,且,.(1)求和:(2)若,,求向量與向量的夾角的大小.21.大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學家發(fā)現(xiàn)鮭魚的游速(單位:)與其耗氧量單位數(shù)之間的關系可以表示為函數(shù),其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當它的游速為時,其耗氧量為2700個單位.(1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;(2)求當一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】應用換元法求的解析式,進而求其定義域、值域,并判斷單調性、奇偶性,即可知正確選項.【詳解】由題意,由,則,即.令,則∴,其定義域為不是偶函數(shù),又故不單調增函數(shù),易得,則,∴.故選:D2、C【解析】設,求出,再由求出.【詳解】設,因為所以,又,所以,所以.故選:C.3、C【解析】由已知可求圓心角的大小,根據(jù)弧長公式即可計算得解【詳解】設扇形的弧長為l,圓心角大小為,∵半徑為2的扇形OAB中,弦AB的長為2,∴,∴故選C【點睛】本題主要考查了弧長公式的應用,考查了數(shù)形結合思想的應用,屬于基礎題4、D【解析】利用兩平行線間的距離公式即可求解.【詳解】直線的方程可化為,則與之間的距離故選:D5、D【解析】>1,<0,0<<1,∴b<c<1,又在x∈(-∞,1)上是減函數(shù),∴f(c)<f(b)<0,而f(a)>0,∴f(c)<f(b)<f(a).點睛:在比較冪和對數(shù)值的大小時,一般化為同底數(shù)的冪(利用指數(shù)函數(shù)性質)或同底數(shù)對數(shù)(利用對數(shù)函數(shù)性質),有時也可能化為同指數(shù)的冪(利用冪函數(shù)性質)比較大小,在不能這樣轉化時,可借助于中間值比較,如0或1等.把它們與中間值比較后可得出它們的大小6、A【解析】利用并集概念進行計算.【詳解】.故選:A7、D【解析】利用函數(shù)的概念逐一判斷即可.【詳解】對于A,函數(shù)的定義域為,不滿足題意,故A不正確;對于B,一個自變量對應多個值,不符合函數(shù)的概念,故B不正確;對于C,函數(shù)的值域為,不符合題意,故C不正確;對于D,函數(shù)的定義域為,值域為,滿足題意,故D正確.故選:D【點睛】本題考查了函數(shù)的概念以及函數(shù)的定義域、值域,考查了基本知識的掌握情況,理解函數(shù)的概念是解題的關鍵,屬于基礎題.8、B【解析】先分析函數(shù)的單調性,進而結合零點存在定理,可得函數(shù)在區(qū)間上有一個零點【詳解】解:函數(shù)在上為增函數(shù),又(1),(2),函數(shù)在區(qū)間上有一個零點,故選:9、B【解析】由偶函數(shù)在區(qū)間上單調遞減,且,所以在區(qū)間上單調遞增,且,即函數(shù)對應的圖象如圖所示,則不等式等價為或,解得或,故選B考點:不等關系式的求解【方法點晴】本題主要考查了與函數(shù)有關的不等式的求解,其中解答中涉及到函數(shù)的奇偶性、函數(shù)的單調性,以及函數(shù)的圖象與性質、不等式的求解等知識點的綜合考查,著重考查了學生分析問題和解答問題的能,以及推理與運算能力,試題比較基礎,屬于基礎題,本題的解得中利用函數(shù)的奇偶性和單調性,正確作出函數(shù)的圖象是解答的關鍵10、B【解析】集合、與集合之間的關系用或,元素0與集合之間的關系用或,ACD選項都使用錯誤?!驹斀狻?,只有B選項的表示方法是正確的,故選:B?!军c睛】本題考查了元素與集合、集合與集合之間的關系的表示方法,注意集合與集合之間的關系是子集(包含于),元素與集合之間的關系是屬于或不屬于。本題屬于基礎題。二、填空題:本大題共6小題,每小題5分,共30分。11、##【解析】由題意,可令,將原函數(shù)變?yōu)槎魏瘮?shù),通過配方,得到對稱軸,再根據(jù)函數(shù)的定義域和值域確定實數(shù)需要滿足的關系,列式即可求解.【詳解】設,則,∵,∴必須取到,∴,又時,,,∴,∴.故答案為:12、③④【解析】利用基本不等式可判斷①正誤;利用抽象函數(shù)的定義域可判斷②的正誤;解對數(shù)不等式可判斷③;構造函數(shù),函數(shù)在上單調遞減,結合,求得可判斷④.詳解】對于①,當時,,由基本不等式可得,當且僅當時,即當時,等號成立,但,故等號不成立,所以,函數(shù),的最小值不是,①錯誤;對于②,若函數(shù)的定義域為,則有,解得,即函數(shù)的定義域為,②錯誤;對于③,若,所以當時,解得:,不滿足;當時,解得:,所以的取值范圍是,③正確;對于④,令,函數(shù)在上單調遞減,由得,則,即,故④正確.故答案為:③④.13、【解析】由函數(shù)變形為,再由基本不等式求得,從而有,即可得到答案.【詳解】∵函數(shù)∴由基本不等式得,當且僅當,即時取等號.∴函數(shù)的最大值是故答案為.【點睛】本題主要考查線性規(guī)劃的應用以及基本不等式的應用,.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最?。蝗嗟仁?,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內,二是多次用或時等號能否同時成立).14、9【解析】“1”的代換法去求的最小值即可.【詳解】(當且僅當時等號成立)則的最小值為9故答案為:915、6【解析】先由已知求出半徑,從而可求出弧長【詳解】設扇形所在圓的半徑為,因為扇形的面積為9,圓心角為2弧度,所以,得,所以該扇形的弧長為,故答案為:616、【解析】根據(jù)直角三角形的外接圓的直徑是直角三角形的斜邊,結合球的對稱性、勾股定理、直三棱柱的幾何性質進行求解即可.【詳解】因為,所以三角形是以為斜邊的直角三角形,因此三角形的外接圓的直徑為,圓心為.因為,所以,在直三棱柱中,側面是矩形且它的中心即為球心O,球的直徑是的長,則,所以球的半徑為故答案為:【點睛】本題考查了直三棱柱外接球問題,考查了直觀想象能力和數(shù)學運算能力.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)為減函數(shù);證明見解析【解析】(1)根據(jù)奇函數(shù)的定義,即可求出;(2)利用定義證明單調性【詳解】解:(1),由得,解得另解:由,令得代入得:驗證,當時,,滿足題意(2)為減函數(shù)證明:由(1)知,在上任取兩不相等的實數(shù),,且,,由為上的增函數(shù),,,,,則,函數(shù)為減函數(shù)【點睛】定義法證明函數(shù)單調性的步驟:(1)取值;(2)作差;(3)定號;(4)下結論18、(1)見解析.(2)[2-,1)∪(1,2+]【解析】試題分析:(1)利用換元法求函數(shù)解析式,注意換元時元的范圍,再根據(jù)奇偶性定義判斷函數(shù)奇偶性,最后根據(jù)復合函數(shù)單調性性質判斷函數(shù)單調性(2)不等式恒成立問題一般轉化為對應函數(shù)最值問題:即f(x)最大值小于4,根據(jù)函數(shù)單調性確定函數(shù)最大值,自在解不等式可得a的取值范圍試題解析:(1)令logax=t(t∈R),則x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)為奇函數(shù)當a>1時,y=ax為增函數(shù),y=-a-x為增函數(shù),且>0,∴f(x)為增函數(shù)當0<a<1時,y=ax為減函數(shù),y=-a-x為減函數(shù),且<0,∴f(x)為增函數(shù).∴f(x)在R上為增函數(shù)(2)∵f(x)是R上的增函數(shù),∴y=f(x)-4也是R上的增函數(shù)由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒為負數(shù),只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范圍為[2-,1)∪(1,2+]點睛:不等式有解是含參數(shù)的不等式存在性問題時,只要求存在滿足條件的即可;不等式的解集為R是指不等式的恒成立,而不等式的解集的對立面(如的解集是空集,則恒成立))也是不等式的恒成立問題,此兩類問題都可轉化為最值問題,即恒成立?,恒成立?.19、(1);(2).【解析】(1)根據(jù)對數(shù)函數(shù)的定義域及單調性求解即可;(2)由題意原問題轉化為在上恒成立,分與兩種情況分類討論,求出最值解不等式即可.【詳解】(1)時,函數(shù)定義域為解得不等式的解集為(2)設,由題意知,解得,在上恒成立在上恒成立令,的圖象是開口向下,對稱軸方程為的拋物線.①時,上恒成立等價于解得,這與矛盾.②當時,在上恒成立等價于解得或又綜上所述,實數(shù)的取值范圍是【點睛】關鍵點點睛:由題意轉化為在上恒成立,分類討論去掉對數(shù)符號,轉化為二次函數(shù)在上最大值或最小值,是解題的關鍵所在,屬于中檔題.20、(1),;(2).【解析】(1)本題首先可根據(jù)、得出,然后通過計算即可得出結果;(2)本題首先可根據(jù)題意得出以及,然后求出、以及的值,最后根據(jù)向量的數(shù)量積公式即可得出結果.【詳解】(1)因為,,,且,,所以,解得,故,.(2)因為,,所以,因為,,所以,,,,設與的夾角為,則
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滑行車幼兒課程設計
- 2024年教育培訓機構教師勞動合同規(guī)范文本3篇
- 機電課程設計前言
- 2024內衣行業(yè)產(chǎn)品包裝設計與應用合同模板3篇
- 2024年度養(yǎng)殖土地承包與農(nóng)業(yè)信息化服務合同范本3篇
- 2024升降機租賃與施工安全協(xié)議合同3篇
- 2024年度旅游線路規(guī)劃單項服務合同3篇
- 籃球暑期課程設計
- 微機模擬空調課程設計
- 電信課程設計論文范文
- 陜西省西安市碑林區(qū)鐵一中學2020-2021學年七年級上學期期末數(shù)學試題(含答案解析)
- 簡支梁、懸臂梁撓度計算程序(自動版)
- 埋地鋼管結構計算
- X-Y數(shù)控工作臺及其控制系統(tǒng)設計
- 統(tǒng)編版小學四年級語文上冊五六單元測試卷(附答案)
- 高支模技術交底(新版)
- 電工新技術介紹(課堂PPT)
- 我最喜歡的節(jié)日的小學英語作文我喜歡的節(jié)日英語作文.doc
- 機電設備維護保養(yǎng)技術
- 對于部門整體支出績效評價結果整改報告
- 121課堂教學新模式
評論
0/150
提交評論