吉林省高中2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第1頁
吉林省高中2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第2頁
吉林省高中2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第3頁
吉林省高中2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第4頁
吉林省高中2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

吉林省高中2025屆高二數(shù)學第一學期期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題若,且,則,命題在中,若,則.下列命題中為真命題的是()A. B.C. D.2.(2017新課標全國卷Ⅲ文科)已知橢圓C:的左、右頂點分別為A1,A2,且以線段A1A2為直徑的圓與直線相切,則C的離心率為A. B.C. D.3.已知數(shù)列中,前項和為,且點在直線上,則=A. B.C. D.4.給出下列結(jié)論:①如果數(shù)據(jù)的平均數(shù)為3,方差為0.2,則的平均數(shù)和方差分別為14和1.8;②若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的值越接近于1.③對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為30.則正確的個數(shù)是().A.3 B.2C.1 D.05.過拋物線的焦點的直線交拋物線于不同的兩點,則的值為A.2 B.1C. D.46.在正項等比數(shù)列中,,,則()A27 B.64C.81 D.2567.命題“,”的否定形式是()A., B.,C., D.,8.直線l:的傾斜角為()A. B.C. D.9.已知,向量,,若,則x的值為()A.-1 B.1C.-2 D.210.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經(jīng)過點P,則橢圓C的短軸的最小值為()A. B.C. D.11.下列求導錯誤的是()A. B.C. D.12.在中,,,為所在平面上任意一點,則的最小值為()A.1 B.C.-1 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式有且只有兩個整數(shù)解,則實數(shù)a的范圍為___________14.如圖的形狀出現(xiàn)存南宋數(shù)學家楊輝所著的《詳解九章算法·商功》中,后人稱為“三角垛”.“三角垛”的最一上層有1個球,第二層有3個球,第三層有6個球……,設(shè)從上至下各層球數(shù)構(gòu)成一個數(shù)列則___________.(填數(shù)字)15.若正數(shù)x、y滿足,則的最小值等于________.16.設(shè)是同一個半徑為4的球的球面上四點,為等邊三角形且其面積為,則三棱錐體積的最大值為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某高中招聘教師,首先要對應聘者的簡歷進行篩選,簡歷達標者進入面試,面試環(huán)節(jié)應聘者要回答3道題,第一題為教育心理學知識,答對得4分,答錯得0分,后兩題為學科專業(yè)知識,每道題答對得3分,答錯得0分(1)甲、乙、丙、丁、戊來應聘,他們中僅有3人的簡歷達標,若從這5人中隨機抽取3人,求這3人中恰有2人簡歷達標的概率;(2)某進入面試的應聘者第一題答對的概率為,后兩題答對的概率均為,每道題答對與否互不影響,求該應聘者的面試成績X的分布列及數(shù)學期望18.(12分)已知在數(shù)列中,,且.(1)求,,并證明數(shù)列是等比數(shù)列;(2)求的通項公式及前n項和.19.(12分)設(shè)橢圓:的左頂點為,右頂點為.已知橢圓的離心率為,且以線段為直徑的圓被直線所截得的弦長為.(1)求橢圓的標準方程;(2)設(shè)過點的直線與橢圓交于點,且點在第一象限,點關(guān)于軸對稱點為點,直線與直線交于點,若直線斜率大于,求直線的斜率的取值范圍.20.(12分)如圖,在直三棱柱中,,是中點.(1)求點到平面的的距離;(2)求平面與平面夾角的余弦值;21.(12分)已知數(shù)列是遞增的等比數(shù)列,是其前n項和,,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和22.(10分)著名的“康托爾三分集”是由德國數(shù)學家康托爾構(gòu)造的,是人類理性思維的產(chǎn)物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎(chǔ)上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進行下去,以至無窮.每次操作后剩下的閉區(qū)間構(gòu)成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數(shù)據(jù):,)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)不等式性質(zhì)及對數(shù)函數(shù)的單調(diào)性判斷命題的真假,根據(jù)大角對大邊及正弦定理可判斷命題的真假,再根據(jù)復合命題真假的判斷方法即可得出結(jié)論.【詳解】解:若,且,則,當時,,所以,當時,,所以,綜上命題為假命題,則為真命題,在中,若,則,由正弦定理得,所以命題為真命題,為假命題,所以為真命題,,,為假命題.故選:A.2、A【解析】以線段為直徑的圓的圓心為坐標原點,半徑為,圓的方程為,直線與圓相切,所以圓心到直線的距離等于半徑,即,整理可得,即即,從而,則橢圓的離心率,故選A.【名師點睛】解決橢圓和雙曲線的離心率的求值及取值范圍問題,其關(guān)鍵就是確立一個關(guān)于的方程或不等式,再根據(jù)的關(guān)系消掉得到的關(guān)系式,而建立關(guān)于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質(zhì)、點的坐標的范圍等.3、C【解析】點在一次函數(shù)上的圖象上,,數(shù)列為等差數(shù)列,其中首項為,公差為,,數(shù)列的前項和,,故選C考點:1、等差數(shù)列;2、數(shù)列求和4、B【解析】對結(jié)論逐一判斷【詳解】對于①,則的平均數(shù)為,方差為,故①正確對于②,若兩個變量的線性相關(guān)性越強,則相關(guān)系數(shù)r的絕對值越接近于1,故②錯誤對于③,對A、B、C三種個體按3:1:2的比例進行分層抽樣調(diào)查,若抽取的A種個體有15個,則樣本容量為,故③正確故正確結(jié)論為2個故選:B5、D【解析】本題首先可以通過直線交拋物線于不同的兩點確定直線的斜率存在,然后設(shè)出直線方程并與拋物線方程聯(lián)立,求出以及的值,然后通過拋物線的定義將化簡,最后得出結(jié)果【詳解】因為直線交拋物線于不同的兩點,所以直線的斜率存在,設(shè)過拋物線的焦點的直線方程為,由可得,,因為拋物線的準線方程為,所以根據(jù)拋物線的定義可知,,所以,綜上所述,故選D【點睛】本題考查了拋物線的相關(guān)性質(zhì),主要考查了拋物線的定義、過拋物線焦點的直線與拋物線相交的相關(guān)性質(zhì),考查了計算能力,是中檔題6、C【解析】根據(jù)等比數(shù)列的通項公式求出公比,進而求得答案.【詳解】設(shè)的公比為,則(負值舍去),所以.故選:C.7、A【解析】特稱命題的否定是全稱命題【詳解】的否定形式是故選:A8、D【解析】先求得直線的斜率,由此求得傾斜角.【詳解】依題意,直線的斜率為,傾斜角的范圍為,則傾斜角為.故選:D.9、D【解析】根據(jù)給定條件利用空間向量垂直的坐標表示計算作答.【詳解】因向量,,,則,解得,所以x的值為2.故選:D10、B【解析】根據(jù)題意,點關(guān)于直線對稱點的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點關(guān)于直線的對稱點,則,解得,即.根據(jù)橢圓的定義可知,,當、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.11、B【解析】根據(jù)導數(shù)運算求得正確答案.【詳解】、、運算正確.,B選項錯誤.故選:B12、C【解析】以為建立平面直角坐標系,設(shè),把向量的數(shù)量積用坐標表示后可得最小值【詳解】如圖,以為建立平面直角坐標系,則,設(shè),,,,,∴,∴當時,取得最小值故選:C【點睛】本題考查向量的數(shù)量積,解題方法是建立平面直角坐標系,把向量的數(shù)量積轉(zhuǎn)化為坐標表示二、填空題:本題共4小題,每小題5分,共20分。13、【解析】參變分離后研究函數(shù)單調(diào)性及極值,結(jié)合與相鄰的整數(shù)點的函數(shù)值大小關(guān)系求出實數(shù)a的范圍.【詳解】整理為:,即函數(shù)在上方及線上存在兩個整數(shù)點,,故顯然在上單調(diào)遞增,在上單調(diào)遞減,且與相鄰的整數(shù)點的函數(shù)值為:,,,,顯然有,要恰有兩個整數(shù)點,則為0和1,此時,解得:,如圖故答案為:14、【解析】根據(jù)題中給出的圖形,結(jié)合題意找到各層球的數(shù)列與層數(shù)的關(guān)系,得到,即可得解【詳解】解:由題意可知,,,,,,故,所以,故答案為:15、9【解析】把要求的式子變形為,利用基本不等式即可得結(jié)果.【詳解】因為,所以,當且僅當時取等號,故答案為.【點睛】本題主要考查利用基本不等式求最值,屬于難題.利用基本不等式求最值時,一定要正確理解和掌握“一正,二定,三相等”的內(nèi)涵:一正是,首先要判斷參數(shù)是否為正;二定是,其次要看和或積是否為定值(和定積最大,積定和最小);三相等是,最后一定要驗證等號能否成立(主要注意兩點,一是相等時參數(shù)否在定義域內(nèi),二是多次用或時等號能否同時成立).16、【解析】求出等邊的邊長,畫出圖形,判斷D的位置,然后求解即可.【詳解】為等邊三角形且其面積為,則,如圖所示,設(shè)點M為的重心,E為AC中點,當點在平面上的射影為時,三棱錐的體積最大,此時,,點M為三角形ABC的重心,,中,有,,所以三棱錐體積的最大值故答案為:【點睛】思路點睛:本題考查球的內(nèi)接多面體,棱錐的體積的求法,要求內(nèi)接三棱錐體積的最大值,底面是面積一定的等邊三角形,需要該三棱錐的高最大,故需要底面,再利用內(nèi)接球,求出高,即可求出體積的最大值,考查學生的空間想象能力與數(shù)形結(jié)合思想,及運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)分布列見解析;期望為【解析】(1)根據(jù)古典概型的概率公式即可求出;(2)根據(jù)題意可知,隨機變量X的所有可能取值為0,3,4,6,7,10,再利用相互獨立事件的概率乘法公式分別求出對應的概率,列出分布列即可求出數(shù)學期望【小問1詳解】從這5人中隨機抽取3人,恰有2人簡歷達標的概率為【小問2詳解】由題可知,X的所有可能取值為0,3,4,6,7,10,則,,,,,.故X的分布列為:X0346710P所以18、(1),,證明見解析(2),【解析】(1)根據(jù)遞推關(guān)系求出,,對遞推公式變形,即可得證;(2)結(jié)合(1)求得通項公式,分組求和.【小問1詳解】因為,且所以,,∵,∴,∵,∴,且,∴數(shù)列是等比數(shù)列.【小問2詳解】由(1)可知是以為首項,以3為公比的等比數(shù)列,即,即;.19、(1);(2).【解析】(1)根據(jù)直線被圓截得的弦長為,由解得,再由離心率結(jié)合求解。(2)設(shè),則,得到直線:;直線:,聯(lián)立求得,再根據(jù)線斜率大于,求得,然后由求解.【詳解】(1)以線段為直徑的圓的圓心為:,半徑,圓心到直線的距離,直線被圓截得的弦長為,解得:,又橢圓離心率,∴,,橢圓的標準方程為:.(2)設(shè),其中,,則,∴,,則直線為:;直線為:,由得:,∴,∴,∴,令,,則,∴,∵∴,∴,即.【點睛】本題主要考查橢圓方程和幾何性質(zhì)以及直線與圓,橢圓的位置關(guān)系的應用,還考查了運算求解的能力,屬于中檔題.20、(1)(2)【解析】(1)以為原點,為軸,為軸,為軸建立空間直角坐標系,求出平面的法向量為,再利用公式計算即可;(2)易得平面的法向量為,設(shè)平面與平面的夾角為,再利用計算即可小問1詳解】解:(1)以為原點,為軸,為軸,為軸建立空間直角坐標系所以因為,設(shè)平面的法向量為,則有,得,令則,所以可以取,設(shè)點到平面的距離為,則,所以點到平面的的距離的距離為;【小問2詳解】(2)因為平面,取平面的法向量為設(shè)平面與平面的夾角為,所以平面與平面夾角的余弦值21、(1);(2).【解析】(1)根據(jù)給定條件求出數(shù)列的公比即可計算得解.(2)由(1)的結(jié)論求出,然后利用分組求和方法求解作答.【小問1詳解】設(shè)等比數(shù)列的公比為q,而,且是遞增數(shù)列,則,,解得,所以數(shù)列的通項公式是:.【小問2詳解】由(1)知,,,,所以數(shù)列的前n項和.22、(1)(2)(3)【解析】(1)根據(jù)“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據(jù)“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結(jié)合題意,得到,利用對數(shù)的運算公式,即可求解.【小問1詳解】解:根據(jù)“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論